Skip to main content

Expected Lifetime and Capacity

  • Conference paper
  • 1441 Accesses

Part of the book series: Progress in Probability ((PRPR,volume 70))

Abstract

We investigate sharp isoperimetric problems for random walks on weighted graphs. Symmetric weights on edges determine the one step transition probabilities for the random walk, measure of sets and capacity between sets. In that setup one can be interested in the exit time of the random walk from a set, i.e. to find for a fixed starting point the “optimal” set of given volume which maximizes the expected time when the walk leaves the set. A strongly related problem is to find a set of fixed volume which has minimal conductance with respect to a given set. In both problems the answer is less appealing than in the case of Euclidean space. As demonstrated by a simple counterexample, there is no unique optimal set. The Berman-Konsowa principle is used in the search for optimal sets. It allows to construct a new graph on which the calculation of conductance and mean exit time is tractable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Bañuelos, Isoperimetric inequalities in probability, geometry, and PDE’s, http://www.math.purdue.edu/~banuelos/btlecture.pdf

  2. M. Barlow, J. Pitman, M. Yor, On Walsh’s Brownian Motions. Lecture Notes in Mathematics, vol. 1372 (Springer, Berlin, 1989), pp. 275–293

    Google Scholar 

  3. M.T. Barlow, R.F. Bass, T. Kumagai, Stability of parabolic Harnack inequalities on metric measure spaces. J. Math. Soc. Jpn. 58(2), 485–519 (2006)

    Article  MathSciNet  Google Scholar 

  4. K.A. Berman, M.H. Konsowa, Random paths and cuts, electrical networks, and reversible Markov chains. SIAM J. Discret. Math. 3(3), 311–319 (1990)

    Article  MathSciNet  Google Scholar 

  5. T. Carroll, Old and new on the Bass note, the Torsion function and the hyperbolic metric. Irish Math. Soc. Bull. 47, 41–65 (2001)

    Google Scholar 

  6. P.G. Doyle, J.L. Snell, Random Walks and Electric Networks. Carus Mathematical, Monographs, 22 (Mathematical Association of America, Washington, 1984)

    Google Scholar 

  7. A. Grigory’an, A. Telcs, Two-sided estimates of heat kernels on metric measure spaces. Ann. Probab. 40(3), 1212–1284 (1990)

    Article  MathSciNet  Google Scholar 

  8. F.T. den Hollander, S. Jensen, Berman-Konsowa Principles for Reversible Markov Jump Processes (preprint). http://arxiv.org/abs/1309.1305

  9. G. Pólya, G. Szegő, Isoperimetric Inequalities in Mathematical Physics (No. 27) (Princeton University Press, Princeton, 1951)

    Google Scholar 

  10. A. Telcs, Isoperimetric inequalities for Random Walks. Potential Anal. 19(3), 237–249 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Telcs, The Art of Random Walks. Lecture Notes in Mathematics, vol. 1885 (Springer, Berlin/New York, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Telcs .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Proposition 4.2

Let us recall that we assume that D is an optimal set and slightly change its boundary along the border crossing edges. We consider the Lagrange function with multiplier \(\lambda \in \mathbb{R}:\)

$$\displaystyle{ \mathrm{Cap}_{L}^{\mathbb{P}}\left (D_{\xi },F\right ) +\lambda \mu \left (D_{\xi }\right ). }$$

Denote \(\xi _{l} =\xi _{l}\left (x,y\right ): w_{l} = \left (\xi _{l},x,y\right ) \in \partial D\) forming the perturbation vector \(\xi = \left [\xi _{l}\right ].\) Let \(z_{l} = \partial F \cap l\) be the endpoint of the path l at the boundary of F.

$$\displaystyle{ \frac{\partial } {\partial \xi _{l}}\left [\sum _{l}\mathrm{Cap}_{L}^{\mathbb{P}}\left (w_{ l},z_{l}\right ) +\lambda \mu \left (D_{\xi }\right )\right ]. }$$

Setting the derivative zero and using \(r_{l} = R^{l}\left (w_{l},z_{l}\right )\) we have that

$$\displaystyle\begin{array}{rcl} 0& =& \frac{\partial } {\partial \xi _{l}}\left [\sum _{l}\mathrm{Cap}_{L}^{\mathbb{P}}\left (w_{ l},z_{l}\right ) +\lambda \mu \left (D_{\xi }\right )\right ] = {}\\ & =& \frac{\partial } {\partial \xi _{l}}\left [ \frac{1} {r_{l}} +\lambda \mu _{l}\right ] {}\\ & =& -\frac{R^{l}\left (x_{l},y_{l}\right )} {r_{l}^{2}} +\lambda \mu ^{l}\left (x_{ l},y_{l}\right ) {}\\ \end{array}$$

for all path l ∈ L and

$$\displaystyle{ \mu ^{l}\left (x_{ l},y_{l}\right )r_{l} =\mathrm{ const} }$$

is a necessary condition for the optimality. □ 

Proof of Theorem 5.3

We consider the variational problem

$$\displaystyle{ \max _{F^{{\prime}}:\,\mu (F^{{\prime}})\leq M}E_{x}\left (F^{{\prime}}\right ). }$$

Assume that F is optimal with a path system L and the probability \(\mathbb{P}\) on it. As in the case of the capacity we perturb F in a small neighborhood. The maximal solution should satisfy for a suitable λ and for all path l that

$$\displaystyle\begin{array}{rcl} \frac{\partial } {\partial s_{l}}\left [E_{x}\left (F\right ) +\lambda \mu \left (F\right )\right ]& =& 0 {}\\ \frac{\partial } {\partial s_{l}}\left [R\sum _{p} \frac{e_{p}} {R_{p}} +\lambda \mu \left (F\right )\right ]& =& \frac{\partial } {\partial s_{l}}\left [R\sum _{p}\left ( \frac{e_{p}} {R_{p}} +\lambda \mu _{p}\right )\right ] = 0, {}\\ \end{array}$$

where s l is the length of l and we use μ l for the volume of the path l. Let \(E =\sum _{} \frac{e_{l}} {R_{l}}\), the density of μ is \(\mu \left (z_{l}\right ) = \frac{d\mu } {ds}\vert _{s_{l}},\) where s is the arc length parametrization of \(l_{z}: w\left (s_{l}\right ) = z_{l}\). Furthermore, \(\mu _{l} =\mu \left (z_{l}\right )\) and the density of resistance is \(\rho \left (z_{l}\right ) = 1/\mu (z_{l})\), then the derivative is as follows

$$\displaystyle\begin{array}{rcl} \frac{\partial } {\partial s_{l}}\left [R\sum _{p}\left ( \frac{e_{p}} {R_{p}} +\lambda \mu _{p}\right )\right ] = \left ( \frac{\partial } {\partial s_{l}}R\right )E + R \frac{\partial } {\partial s_{l}}E +\lambda \mu \left (z_{l}\right ).& & {}\\ \end{array}$$

One can find that

$$\displaystyle{ \left ( \frac{\partial } {\partial s_{l}}R\right ) = \frac{\partial } {\partial s_{l}} \frac{1} {\sum _{p} \frac{1} {R_{p}}} = R^{2}\frac{\rho \left (z_{l}\right )} {R_{l}^{2}} }$$

and

$$\displaystyle\begin{array}{rcl} \frac{\partial } {\partial s_{l}}e_{l}& =& \frac{\partial } {\partial s_{l}}\int r\left (w_{s},z_{l}\right )\mu \left (w\left (s\right )\right )ds {}\\ & =& \frac{\partial } {\partial s_{l}}\int _{0}^{s_{l} }\int _{s}^{s_{l} }\rho \left (w\left (t\right )\right )dt\mu \left (w\left (s\right )\right )ds {}\\ & =& \rho \left (z_{l}\right )\mu _{l}, {}\\ \end{array}$$
$$\displaystyle{ \frac{\partial } {\partial s_{l}}E = \frac{\partial } {\partial s_{l}} \frac{e_{l}} {R_{l}} =\rho \left (z_{l}\right )\frac{\mu _{l}R_{l} - e_{l}} {R_{l}^{2}}. }$$

It is trivial that \(e_{l} \leq \mu _{l}R_{l}\), so the defined δ l is nonnegative. Furthermore,

$$\displaystyle{ \frac{\partial } {\partial s_{l}}E = \frac{\rho \left (z_{l}\right )} {R_{l}^{2}} \delta _{l}e_{l}. }$$
$$\displaystyle{ \frac{\partial } {\partial s_{l}}E_{x}\left (F\right ) = R^{2}\frac{\rho \left (z_{l}\right )} {R_{l}^{2}} E + R\frac{\rho \left (z_{l}\right )} {R_{l}^{2}} \delta _{l}e_{l} +\lambda \mu \left (z_{l}\right ) = 0 }$$
$$\displaystyle{ R\frac{\rho \left (z_{l}\right )^{2}} {R_{l}^{2}} E + \frac{\rho \left (z_{l}\right )^{2}} {R_{l}^{2}} \delta _{l}e_{l} =\mathrm{ const}. }$$

 □ 

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Telcs, A., E.-Nagy, M. (2015). Expected Lifetime and Capacity. In: Bandt, C., Falconer, K., Zähle, M. (eds) Fractal Geometry and Stochastics V. Progress in Probability, vol 70. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-18660-3_17

Download citation

Publish with us

Policies and ethics