Skip to main content

Terahertz Wave Generation Using Graphene and Compound Semiconductor Nano-Heterostructures

  • Chapter
  • 1388 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This paper reviews recent advances in terahertz wave generation using graphene and compound semiconductor nano-heterostructures. The excitation of two-dimensional (2D) plasmons in high-electron mobility transistors (HEMTs) and related semiconductor nano-heterostructures has been used for emission of THz electromagnetic radiation. Plasmons in graphene (which is one or several monolayers of a honeycomb carbon lattice) have a higher velocity and peculiar transport properties owing to the massless and gapless energy spectrum of graphene. Optical and/or injection pumping of graphene results in a negative-dynamic conductivity in the THz spectral range, which may enable new types of THz lasers. Fundamental physics behind the device operation mechanisms and experimental results are demonstrated including coherent monochromatic THz radiation from InP-based HEMT-type emitters and stimulated emission of THz radiation with a giant gain via excitation of surface plasmon polaritons in optically pumped monolayer intrinsic graphene.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007)

    Article  Google Scholar 

  2. M. Dyakonov, M. Shur, Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71, 2465–2468 (1993)

    Article  Google Scholar 

  3. M. Dyakonov, M. Shur, Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron. Dev. 43, 1640–1645 (1996)

    Article  Google Scholar 

  4. K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  5. V. Ryzhii, M. Ryzhii, T. Otsuji, Negative dynamic conductivity of graphene with optical pumping. J. Appl. Phys. 101, 083114 (2007)

    Article  Google Scholar 

  6. M. Ryzhii, V. Ryzhii, Injection and population inversion in electrically induced p–n junction in graphene with split gates. Jpn. J. Appl. Phys. 46, L151–L153 (2007)

    Article  Google Scholar 

  7. I. Khmyrova, Y. Seijyou, Analysis of plasma oscillations in high-electron mobility transistor like structures: distributed circuit approach. Appl. Phys. Lett. 91, 143515 (2007)

    Article  Google Scholar 

  8. I.G.R. Aizin, G.C. Dyer, Transmission line theory of collective plasma excitations in periodic two-dimensional electron systems: finite plasmonic crystals and Tamm states. Phys. Rev. B 86, 235316 (2012)

    Article  Google Scholar 

  9. A. Gutin, A. Muraviev, M. Shur, V. Kachorovski, Large signal analytical and SPICE model of THz plasmonic FET, Lester Eastman Conference Proceedings, pp. 62–63 (2012), IEEE Catalog Number: CFP12COR-ART

    Google Scholar 

  10. T. Otsuji, M. Shur, Terahertz plasmonics. Good results and great expectations. IEEE Microw. J. 15, 43–50 (2014)

    Article  Google Scholar 

  11. S. Rudin, G. Rupper, A. Gutin, M. Shur, Theory and measurement of plasmonic terahertz detector response to large signals. J. Appl. Phys. 115, 064503 (2014)

    Article  Google Scholar 

  12. A.V. Chaplik, Possible crystallization of charge carriers in low-density inversion layers. Sov. Phys. JETP 35, 395–398 (1972)

    Google Scholar 

  13. A.V. Chaplik, Absorption and emission of electromagnetic waves by two-dimensional plasmons. Surf. Sci. Rep. 5, 289–335 (1985)

    Article  Google Scholar 

  14. V.V. Popov, A.N. Koudymov, M. Shur, O.V. Polischuk, Tuning of ungated plasmons by a gate in the field-effect transistor with two-dimensional electron channel. J. Appl. Phys. 104, 024508 (2008)

    Article  Google Scholar 

  15. V. Ryzhii, M.S. Shur, Plasma Wave Electronics Devices, ISDRS Digest, WP7–07-10 (ISDRS, Washington, DC, 2003), pp. 200–201

    Google Scholar 

  16. W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lu, R. Gaska, M.S. Shur, G. Simin, X. Hu, M. Asif Khan, C.A. Saylor, L.C. Brunel, Nonresonant detection of terahertz radiation in field effect transistors. J. Appl. Phys. 91, 9346–9353 (2002)

    Article  Google Scholar 

  17. Y. Deng, R. Kersting, J. Xu, R. Ascazubi, X.C. Zhang, M.S. Shur, R. Gaska, G.S. Simin, M.A. Khan, V. Ryzhii, Millimeter wave emission from GaN HEMT. Appl. Phys. Lett. 84, 70–72 (2004)

    Article  Google Scholar 

  18. W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. Popov, M.S. Shur, Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors. Appl. Phys. Lett. 84, 2331–2333 (2004)

    Article  Google Scholar 

  19. N. Dyakonova, A. El Fatimy, J. Lusakowski, W. Knap, M.I. Dyakonov, M.-A. Poisson, E. Morvan, S. Bollaert, A. Shchepetov, Y. Roefens, C. Gaquiere, D. Theron, A. Cappy, Room-temperature terahertz emission from nanometer field-effect transistors. Appl. Phys. Lett. 88, 141906 (2006)

    Article  Google Scholar 

  20. T. Watanabe, A. Satou, T. Suemitsu, W. Knap. V.V. Popov, T. Otsuji, Plasmonic terahertz monochromatic coherent emission from an asymmetric chirped dual-grating-gate InP-HEMT with a photonic vertical cavities, CLEO: Conference on Lasers and Electrooptics Dig., CW3K.7, San Jose, CA, USA, June 12, 2013.

    Google Scholar 

  21. T. Otsuji, M. Hanabe, T. Nishimura, E. Sano, A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure. Opt. Express 14, 4815–4825 (2006)

    Article  Google Scholar 

  22. T. Otsuji, Y.M. Meziani, T. Nishimura, T. Suemitsu, W. Knap, E. Sano, T. Asano, V.V. Popov, Emission of terahertz radiation from dual-grating-gates plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems. J. Phys. Condens. Matters 20, 384206 (2008)

    Article  Google Scholar 

  23. Y. Tsuda, T. Komori, T. Watanabe, T. Suemitsu, T. Otsuji, Application of plasmonic microchip emitters to broadband terahertz spectroscopic measurement. J. Opt. Soc. Am. B 26, A52–A57 (2009)

    Article  Google Scholar 

  24. T. Otsuji, T. Watanabe, S. Boubanga Tombet, A. Satou, W. Knap, V. Popov, M. Ryzhii, V. Ryzhii, Emission and detection of terahertz radiation using two-dimensional electrons in III-V semiconductors and graphene. IEEE Trans. Terahertz Sci. Technol. 3, 63–72 (2013)

    Article  Google Scholar 

  25. V.Y. Kachorovskii, M.S. Shur, Current-induced terahertz oscillations in plasmonic crystal. Appl. Phys. Lett. 100, 232108 (2012)

    Article  Google Scholar 

  26. V. Ryzhii, A. Satou, M. Ryzhii, T. Otsuji, M.S. Shur, Mechanism of self-excitation of terahertz plasma oscillations in periodically double-gated electron channels. J. Phys. Condens. Matters 20, 384207 (2008)

    Article  Google Scholar 

  27. M.I. Dyakonov, Boundary instability of a two-dimensional electron fluid. Semiconductors 42, 984–988 (2008)

    Article  Google Scholar 

  28. V.V. Popov, D.V. Fateev, T. Otsuji, Y.M. Meziani, D. Coquillat, W. Knap, Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell. Appl. Phys. Lett. 99, 243504 (2011)

    Article  Google Scholar 

  29. M. Breusing, C. Ropers, T. Elsaesser, Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2009)

    Article  Google Scholar 

  30. A. Satou, T. Otsuji, V. Ryzhii, Theoretical study of population inversion in graphene under pulse excitation. Jpn. J. Appl. Phys. 50, 070116 (2011)

    Article  Google Scholar 

  31. T. Otsuji, S.A. Boubanga Tombet, A. Satou, H. Fukidome, M. Suemitsu, E. Sano, V. Popov, M. Ryzhii, V. Ryzhii, Graphene-based devices in terahertz science and technology. J. Phys. D 45, 303001 (2012)

    Article  Google Scholar 

  32. H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, T. Otsuji, Observation of amplified stimulated terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials. J. Infrared Millim. Terahertz Waves 32, 655–665 (2011)

    Article  Google Scholar 

  33. S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, T. Otsuji, Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature. Phys. Rev. B 85, 035443 (2012)

    Article  Google Scholar 

  34. T. Otsuji, S. Boubanga-Tombet, A. Satou, M. Suemitsu, V. Ryzhii, Spectroscopic study on ultrafast carrier dynamics and terahertz amplified stimulated emission in optically pumped graphene. J. Infrared Millim. Terahertz Waves 33, 825–838 (2012)

    Article  Google Scholar 

  35. A.A. Dubinov, V.Y. Aleshkin, M. Ryzhii, T. Otsuji, V. Ryzhii, Terahertz laser with optically pumped graphene layers and Fabry–Perot resonator. Appl. Phys. Express 2, 092301 (2009)

    Article  Google Scholar 

  36. A.A. Dubinov, Y.V. Aleshkin, V. Mitin, T. Otsuji, V. Ryzhii, Terahertz surface plasmons in optically pumped graphene structures. J. Phys. Condens. Matter 23, 145302 (2011)

    Article  Google Scholar 

  37. T. Watanabe, T. Fukushima, Y. Yabe, S. Boubanga Tombet, A. Satou, A.A. Dubinov, V. Ya Aleshkin, V. Mitin, V. Ryzhii, T. Otsuji, Gain enhancement effect of surface plasmon polaritons on terahertz stimulated emission in optically pumped monolayer graphene. New J. Phys. 15, 075003 (2013)

    Article  Google Scholar 

  38. T. Li, L. Luo, M. Hupalo, J. Zhang, M.C. Tringides, J. Schmalian, J. Wang, Femtosecond population inversion and stimulated emission of dense Dirac Fermions in graphene. Phys. Rev. Lett. 108, 167401 (2012)

    Article  Google Scholar 

  39. V. Ryzhii, M. Ryzhii, V. Mitin, A. Satou, T. Otsuji, Effect of heating and cooling of photogenerated electron–hole plasma in optically pumped graphene on population inversion. Jpn. J. Appl. Phys. 50, 094001 (2011)

    Article  Google Scholar 

  40. V. Ryzhii, M. Ryzhii, V. Mitin, T. Otsuji, Toward the creation of terahertz graphene injection laser. J. Appl. Phys. 110, 094503 (2011)

    Article  Google Scholar 

  41. V. Ryzhii, A. Dubinov, T. Otsuji, V. Mitin, M.S. Shur, Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides. J. Appl. Phys. 107, 054505 (2010)

    Article  Google Scholar 

  42. V.V. Popov, O.V. Polischuk, A.R. Davoyan, V. Ryzhii, T. Otsuji, M.S. Shur, Plasmonic terahertz lasing in an array of graphene nanocavities. Phys. Rev. B 86, 195437 (2012)

    Article  Google Scholar 

  43. V.V. Popov, O.V. Polischuk, S.A. Nikitov, V. Ryzhii, T. Otsuji, M.S. Shur, Amplification and lasing of terahertz radiation by plasmons in graphene with a planar distributed Bragg resonator. J. Opt. 15, 114009 (2013)

    Article  Google Scholar 

  44. T. Otsuji, S. Boubanga-Tombet, A. Satou, M. Ryzhii, V. Ryzhii, Terahertz-wave generation using graphene-toward new types of terahertz lasers. IEEE J. Sel. Top. Quantum Electron. 19, 8400209 (2013)

    Article  Google Scholar 

  45. T. Otsuji, S.A. Boubanga Tombet, A. Satou, H. Fukidome, M. Suemitsu, E. Sano, V. Popov, M. Ryzhii, V. Ryzhii, Graphene materials and devices in terahertz science and technology. MRS Bull. 37, 1235–1243 (2012)

    Article  Google Scholar 

  46. M. Benedict, A. Ermolaev, V. Malyshev, I. Sokolov, E. Trifinov, Superradiance: multiatomic coherent emission (IOP, Bristol, 1996)

    Google Scholar 

  47. V. Ryzhii, A. Satou, T. Otsuji, Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures. J. Appl. Phys. 101, 024509 (2007)

    Article  Google Scholar 

  48. F. Rana, Graphene terahertz plasmon oscillators. IEEE Trans. Nanotechnol. 7, 91–99 (2008)

    Article  Google Scholar 

  49. E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiichi Otsuji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Otsuji, T. et al. (2015). Terahertz Wave Generation Using Graphene and Compound Semiconductor Nano-Heterostructures. In: Korkin, A., Goodnick, S., Nemanich, R. (eds) Nanoscale Materials and Devices for Electronics, Photonics and Solar Energy. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18633-7_7

Download citation

Publish with us

Policies and ethics