Skip to main content

Abstract

A heat transfer fluid (HTF) is a major component in the system for concentrating solar power systems (CSP) to make electricity. The HTF carries thermal energy from the solar concentrator to a steam generator. Currently hydrocarbon oils or alkali-nitrate-based eutectic molten-salt mixtures are used as the HTF in CSP systems, but these materials have limited operating temperature range, which limits efficiency. Hydrocarbons are limited to 250 °C and alkali-nitrate salts are stable only below 600 °C. Using abundant inexpensive materials to make an HTF which is stable to 1,300 °C and compatible with a metal housing, like a Hastelloy nickel alloy, is desired. Design rules are given which tell how the desired goals can be met, which leads to mixing abundant ionic chloride salts, like NaCl and KCl, which boil at temperatures higher than 1,400 °C, with low-melting (~200 °C) covalent metal halides, such as AlCl3 or ZnCl2, to give low-melting (m.p. < 250 °C) eutectic mixtures, which are stable at high temperatures. To have negligible corrosion of the metals which house the eutectic, the component eutectic should have more negative reduction potentials than metals in the salt housing. Accordingly, the ternary K–Na–Zn chloride molten-salt mixtures in the alloy metal housing should be stable. However, corrosion of the metal housing is seen, especially at higher temperatures. The corrosion rates of housing alloys in molten salt in the presence of or excluding air have been experimentally determined at different temperatures. Indications are that the corrosion of the metal is not due to the salt itself but dissolved impurities like water and oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Modi, C.D. Pérez-Segarra, Thermocline thermal storage systems for concentrated solar power plants: one-dimensional numerical model and comparative analysis. Sol. Energ. 100, 84–93 (2014)

    Article  Google Scholar 

  2. C. Richter, S. Teske, R. Short, Concentrating Solar Power: Global Outlook 2009: Why Renewable Energy is Hot (Greenpeace International, SolarPaces, ESTELA, Amsterdam, The Netherlands, 2009)

    Google Scholar 

  3. A. Fernández-García, E. Zarza, L. Valenzuela, M. Pérez, Parabolic-trough solar collectors and their applications. Renew. Sustain. Energy Rev. 14(7), 1695–1721 (2010)

    Article  Google Scholar 

  4. International Energy Agency, Technology Roadmap: Concentrating Solar Power (OECD/IEA Publishing, France, 2010)

    Book  Google Scholar 

  5. D. Barlev, R. Vidu, P. Stroeve, Innovation in concentrated solar power. Sol. Energ. Mater. Sol. Cells 95(10), 2703–2725 (2011)

    Article  Google Scholar 

  6. Haynes international, Corrosion-Resistant alloys, Hastelloy C-22 alloy (Haynes International, Inc., Kokomo, IN, 2002)

    Google Scholar 

  7. High operating temperature fluids funding opportunity announcement, #DE-FOA-0000567: Multidisciplinary University Research Initiative (MURI) of the US Department of Energy, 2012.

    Google Scholar 

  8. S. Qiu, M. White, R. Galbraith, Phase change salt thermal energy storage with integral pool boiler for dish stirling solar power, SunShot Concentrating Solar Power Program Review, (2013), pp. 103–106.

    Google Scholar 

  9. R.I. Dunn, P.J. Hearps, M.N. Wright, Molten-salt power towers: newly commercial concentrating solar storage. Proc. IEEE 100(2), 504–515 (2011)

    Article  Google Scholar 

  10. J. Stekli, Thermal Energy Storage and the United States Department of Energy’s SunShot Initiative, in SolarPACES2011 (SolarPACES, Granada, Spain, 2011)

    Google Scholar 

  11. P.W. Li, C.L. Chan, Q. Hao, P.A. Deymier, K. Muralidharan, D.F. Gervasio, M. Momayez, S. Jeter, A.S. Teja, A. M. Kannan, Halide and oxy-halide eutectic systems for high performance high temperature heat transfer fluids, SunShot Concentrating Solar Power Program Review. April 2013, pp. 85–86. Accessed 10 July 2014, from http://www.nrel.gov/docs/fy13osti/58484.pdf

  12. C. Robelin, P. Chartrand, Thermodynamic evaluation and optimization of the (NaCl + KCl + MgCl2 + CaCl2 + ZnCl2) system. J. Chem. Thermodyn. 43, 377–391 (2011)

    Article  Google Scholar 

  13. A. Gil, M. Medrano, I. Martorell, A. Lazaro, P. Dolado, B. Zalba, L.F. Cabeza, State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renew. Sustain. Energy Rev. 14(1), 31–55 (2010)

    Article  Google Scholar 

  14. J.W. Slusser, J.B. Titcomb, M.T. Heffelfinger, B.R. Dunbobbin, Corrosion in molten nitrate–nitrite salts. J. Met. 37, 24–27 (1985)

    Google Scholar 

  15. G. Sorell, The role of chlorine in high temperature corrosion in waste-to-energy plants. Mater. High Temp. 14, 137–150 (1997)

    Google Scholar 

  16. A. Ravi Shankar, A. Kanagasundar, U. Kamachi Mudali, Corrosion of nickel-containing alloys in molten LiCl–KCl medium. Corros. Sci. Sect. NACE Int. 69, 48–57 (2012)

    Article  Google Scholar 

  17. J.L. Trinstancho-Reyes, M. Sanchez-Carrillo, R. Sandoval-Jabalera, V.M. Orozco-Carmona, F. Almeraya-Calderon, J.G. Chacon-Nava, J.G. Gonzalez-Rodriguez, A. Martinez-Villafane, Electrochemical impedance spectroscopy investigation of alloy Inconel-718 in molten salts at high temperature. Int. J. Electrochem. Sci. 6, 419–431 (2011)

    Google Scholar 

  18. A.V. Abramov, I.B. Polovov, V.A. Volkovich, O.I. Rebrin, T.R. Griffiths, I. May, H. Kinoshita, Spectroelectrochemical study of stainless steel corrosion in NaCl–KCl melt. ECS Trans. 33(7), 277–285 (2010)

    Article  Google Scholar 

  19. C.S. Ni, L.Y. Lu, C.L. Zeng, Y. Niu, Electrochemical impedance studies of the initial-stage corrosion of 310S stainless steel beneath thin film of molten (0.62Li, 0.38 K)2 CO3 at 650 °C. Corros. Sci. 53, 1018–1024 (2011)

    Article  Google Scholar 

  20. J.W. Ambrosek, Molten chloride salts for heat transfer in nuclear systems, Ph.D. Dissertation in Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, (2011)

    Google Scholar 

  21. D.F. Williams, Assessment of Candidate Molten Salt Coolants for the NGNP/NHI Heat-Transfer Loop (Oak Ridge National Laboratory, Oak Ridge, TN, 2006)

    Google Scholar 

  22. K. Vignarooban, P. Pugazhendhi, C. Tucker, D. Gervasio, A.M. Kannan, Corrosion resistance of Hastelloys in molten metal-chloride heat-transfer fluids for concentrating solar power applications. Sol. Energ. 103, 62–69 (2014)

    Article  Google Scholar 

  23. L. L. Wang, S. I. Martin, R. B. Rebak, 2006, Methods to calculate corrosion rates for alloy 22 from polarization resistance experiments, in Proceedings of ASME Pressure Vessels and Piping Division Conference, Vancouver, BC, July 23–27, 2006

    Google Scholar 

  24. A.C. Ciubotariu, L. Benea, M.L. Varsanyi, V. Dragan, Electrochemical impedance spectroscopy and corrosion behavior of Al2O3–Ni nano composite coatings. Electrochim. Acta 53, 4557–4563 (2008)

    Article  Google Scholar 

  25. M.K. Hsieh, D.A. Dzombak, R.D. Vidie, Bridging gravimetric and electrochemical approaches to determine the corrosion rate of metals and metal alloys in cooling systems: bench scale evaluation method. Ind. Eng. Chem. Res. 49, 9117–9123 (2010)

    Article  Google Scholar 

  26. X.L. Zhang, Z.H. Jiang, Z.P. Yao, Z.D. Wu, Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros. Sci. 51, 581–587 (2009)

    Article  Google Scholar 

  27. A. Poursaee, Potentiostatic transient technique, a simple approach to estimate the corrosion current density and Stern–Geary constant of reinforcing steel in concrete. Cem. Concr. Res. 40, 1451–1458 (2010)

    Article  Google Scholar 

  28. L. Wang, Y. Chao, Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in NaCl solution. Mater. Lett. 69, 76–78 (2012)

    Article  Google Scholar 

  29. Y. Zou, J. Wang, Y.Y. Zheng, Electrochemical techniques for determining corrosion rate of rusted steel in seawater. Corros. Sci. 53, 208–216 (2011)

    Article  Google Scholar 

  30. D. Inman, Corrosion in fused salts, in Corrosion, 2nd edn., Metal/Environment Interaction, vol. 1, ed. by L.L. Shreir (Newnes-Butterworths, Boston, MA, 1976).

    Google Scholar 

  31. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Hang, J. Melancon, A.D. Pelton, C. Robelin, S. Petersen, FactSage thermochemical software and databases–recent developments. CALPHAD 33, 295–311 (2009)

    Article  Google Scholar 

  32. Corrosion Resistant Alloys. Haynes International Inc. Accessed July 19, 2014, from http://www.haynesintl.com/CRAlloys.htm

  33. ASTM. Standard practice for preparing, cleaning, and evaluating corrosion test specimens, ASTM Standard G1-03. 2005 Annual Book of ASTM Standards, vol. 03.02, (ASTM, Philadelphia, PA, 2005)

    Google Scholar 

  34. ASTM. Standard test method for corrosivity of water in the absence of heat transfer (weight loss method), ASTM D2688-05. 2005 Annual Book of ASTM Standards, vols. 11.01 and 11.02, (ASTM: Philadelphia, PA, 2005)

    Google Scholar 

  35. ASTM International, vol. 03.02, Standards G 5, G 48, G 59, G 61 and G 102 (ASTM International, West Conshohocken, PA, 2003).

    Google Scholar 

  36. D.A. Jones, Principles and Prevention of Corrosion, 2nd edn. (Prentice-Hall, Upper Saddle River, NJ, 1996)

    Google Scholar 

  37. S. Keysar, D. Hasson, R. Semiat, D. Bramson, Corrosion protection of mild steel by a calcite layer. Ind. Eng. Chem. Res. 36, 2903 (1997)

    Article  Google Scholar 

  38. High temperature corrosion and materials, Molten salt corrosion. High-Temperature Corrosion and Materials Applications, Chapter 15, ed. by George Y. Lai, (ASM International, Materials Park, OH, 2007), pp. 409–421.

    Google Scholar 

  39. R.V. Dennis, L.T. Viyannalage, A.V. Gaikwad, T.K. Rout, S. Banerjee, Graphene nano-composite coatings for protecting low-alloy steels from corrosion. Am. Cer. Soc. Bull. 92, 18–24 (2013)

    Google Scholar 

  40. G. Michel, P. Berthod, S. Mathieu, M. Vilasi, P. Steinmetz, Chromium deposition on cobalt-based alloys by pack-cementation and behavior of the coated alloys in high temperature oxidation. Open. Corros. J. 4, 27–33 (2011)

    Article  Google Scholar 

  41. I.V. Oryshich, O.S. Kostyrko, Influence of molybdenum, tungsten and cobalt on the corrosion of high-temperature strength nickel alloys in molten salts. Met. Sci. Heat Treat. 27(9-10), 740–746 (1985) (English Translation of Metallovedenie i Termicheskaya Obrabotka)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the US Department of Energy for the financial support of this work through DOE MURI award number DE-EE00059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic F. Gervasio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gervasio, D.F., Elsentriecy, H., da Silva, L.P., Kannan, A.M., Xu, X., Vignarooban, K. (2015). Materials Challenges for Concentrating Solar Power. In: Korkin, A., Goodnick, S., Nemanich, R. (eds) Nanoscale Materials and Devices for Electronics, Photonics and Solar Energy. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18633-7_4

Download citation

Publish with us

Policies and ethics