Skip to main content

Cytotoxic Effects and Biocompatibility of Antimicrobial Materials

  • Chapter
Antibacterial Surfaces

Abstract

The rising demand for medical implants for ageing populations and ongoing advancements in medical technology continue to drive the use of implantable devices. Higher implant usage has a consequent increased incidence of implant-related infections, and associated prolonged patient care, pain and loss of limb and other organ function. Numerous antibacterial surfaces have been designed that prevent the onset of biofilm formation, thus reducing or preventing implant-associated infections through inhibiting bacterial adhesion or by killing the organisms that successfully attach to the surface of the implant. Other surfaces have been designed to stimulate a local immune response, promoting the natural clearing of the invading pathogen. The desired antibacterial effects are typically achieved by modulating the surface chemistry and morphology of the implant material, by means of the controlled release of pharmacological agents and bioactive compounds from the surface of the material, or by a combination of both processes. An important issue for any type of antibacterial surface modification lies in balancing the non-fouling, bacteriostatic or bactericidal effects against local and systemic biocompatibility. In this chapter, we will first describe the concept of biocompatibility and its evolution, from devices that do not evoke a negative host response to those that actively drive host regeneration. We will then review the challenges associated with merging the need for an implant material to withstand a bacterial load with those associated with supporting function restoration and tissue healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsson I, Berglundh T, Linder E, Lang NP, Lindhe J (2004) Early bone formation adjacent to rough and turned endosseous implant surfaces. Frühe Knochenbildung bei rauen und gedrehten enossalen Implantatoberflächen Eine experimentelle Studie an Hunden. Clin Oral Implants Res 15(4):381–392. doi:10.1111/j.1600-0501.2004.01082.x

    PubMed  Google Scholar 

  • Alani A, Bishop K (2014) Peri-implantitis. Part 2: Prevention and maintenance of peri-implant health. Br Dent J 217(6):289–297. doi:10.1038/sj.bdj.2014.809

    CAS  PubMed  Google Scholar 

  • Alenius H, Catalán J, Lindberg H, Norppa H, Palomäki J, Savolainen K (2014) Chapter 3 – Nanomaterials and human health. In: Berges UVSWTB (ed) Handbook of nanosafety. Academic, San Diego, pp 59–133. http://dx.doi.org/10.1016/B978-0-12-416604-2.00003-2

    Google Scholar 

  • Almodóvar J, Mower J, Banerjee A, Sarkar AK, Ehrhart NP, Kipper MJ (2013) Chitosan-heparin polyelectrolyte multilayers on cortical bone: periosteum-mimetic, cytophilic, antibacterial coatings. Biotechnol Bioeng 110(2):609–618. doi:10.1002/bit.24710

    PubMed  Google Scholar 

  • Amoroso A, Boudet J, Berzigotti S, Duval V, Teller N, Mengin-Lecreulx D, Luxen A, Simorre J-P, Joris B (2012) A peptidoglycan fragment triggers β-lactam resistance in <italic>Bacillus licheniformis</italic> PLoS Pathog 8(3):e1002571. doi:10.1371/journal.ppat.1002571

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson JM (2001) Biological responses to materials. Annu Rev Mater Res 31(1):81–110. doi:10.1146/annurev.matsci.31.1.81

    CAS  Google Scholar 

  • Anderson JM, Miller KM (1984) Biomaterial biocompatibility and the macrophage. Biomaterials 5(1):5–10. http://dx.doi.org/10.1016/0142-9612(84)90060-7

    CAS  PubMed  Google Scholar 

  • Andreas H, Cornelia P, Uwe W, Silke L, Maciej P, Lutz W, Hans-Georg N, Michael S (2013) In vivo evaluation of copper release and acute local tissue reactions after implantation of copper-coated titanium implants in rats. Biomed Mater 8(3):035009

    Google Scholar 

  • Anitua E, Prado R, Orive G, Tejero R (2014) Effects of calcium-modified titanium implant surfaces on platelet activation, clot formation, and osseointegration. J Biomed Mater Res A. doi:10.1002/jbm.a.35240

    Google Scholar 

  • Antoniani D, Bocci P, Maciąg A, Raffaelli N, Landini P (2010) Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol 85(4):1095–1104. doi:10.1007/s00253-009-2199-x

    CAS  PubMed  Google Scholar 

  • Antoniani D, Rossi E, Rinaldo S, Bocci P, Lolicato M, Paiardini A, Raffaelli N, Cutruzzolà F, Landini P (2013) The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability. Appl Microbiol Biotechnol 97(16):7325–7336. doi:10.1007/s00253-013-4875-0

    CAS  PubMed  Google Scholar 

  • Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G (2012) Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291(1–3):65–72. http://dx.doi.org/10.1016/j.tox.2011.10.022

    CAS  PubMed  Google Scholar 

  • Asharani P, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10(1):65

    PubMed Central  CAS  PubMed  Google Scholar 

  • Asri LATW, Crismaru M, Roest S, Chen Y, Ivashenko O, Rudolf P, Tiller JC, van der Mei HC, Loontjens TJA, Busscher HJ (2014) A shape-adaptive, antibacterial-coating of immobilized quaternary-ammonium compounds tethered on hyperbranched polyurea and its mechanism of action. Adv Funct Mater 24(3):346–355. doi:10.1002/adfm.201301686

    CAS  Google Scholar 

  • Augustine S (2014) All surgical site infections are not equal. Anesth Analg 118(4):883 810.1213/ANE.0000000000000104

    PubMed  Google Scholar 

  • Augustyniak D, Nowak JT, Lundy F (2012) Direct and indirect antimicrobial activities of neuropeptides and their therapeutic potential. Curr Protein Pept Sci 13(8):723–738. doi:10.2174/138920312804871139

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bae Y-J, Park CS, Lee JK, Jeong E, Kim T-B, Cho YS, Moon H-B (2008) A case of anaphylaxis to chlorhexidine during digital rectal examination. J Korean Med Sci 23(3):526–528

    PubMed Central  PubMed  Google Scholar 

  • Bakhshi H, Yeganeh H, Mehdipour-Ataei S, Shokrgozar MA, Yari A, Saeedi-Eslami SN (2013) Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols. Mater Sci Eng C 33(1):153–164. http://dx.doi.org/10.1016/j.msec.2012.08.023

    CAS  Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625. doi:10.1126/science.1099390

    CAS  PubMed  Google Scholar 

  • Bals R, Weiner DJ, Moscioni AD, Meegalla RL, Wilson JM (1999) Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect Immun 67(11):6084–6089

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baran G, Kiani M, Samuel S (2014) Properties of the host (the human body). In: Healthcare and biomedical technology in the 21st century. Springer, New York, pp 183–202. doi:10.1007/978-1-4614-8541-4_6

  • Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S (2009) Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic Di-GMP levels, and enhanced dispersal. J Bacteriol 191(23):7333–7342. doi:10.1128/jb.00975-09

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bastari K, Arshath M, Ng Z, Chia J, Yow Z, Sana B, Tan M, Lim S, Loo S (2014) A controlled release of antibiotics from calcium phosphate-coated poly(lactic-co-glycolic acid) particles and their in vitro efficacy against Staphylococcus aureus biofilm. J Mater Sci Mater Med 25(3):747–757. doi:10.1007/s10856-013-5125-9

    CAS  PubMed  Google Scholar 

  • Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2011) Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater 7(5):2015–2028. http://dx.doi.org/10.1016/j.actbio.2010.12.024

    CAS  PubMed  Google Scholar 

  • Bazaka K, Jacob M, Crawford R, Ivanova E (2012) Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol 95(2):299–311. doi:10.1007/s00253-012-4144-7

    CAS  PubMed  Google Scholar 

  • Beenken KE, Smith JK, Skinner RA, McLaren SG, Bellamy W, Gruenwald MJ, Spencer HJ, Jennings JA, Haggard WO, Smeltzer MS (2014) Chitosan coating to enhance the therapeutic efficacy of calcium sulfate-based antibiotic therapy in the treatment of chronic osteomyelitis. J Biomater Appl. doi:10.1177/0885328214535452

    PubMed Central  PubMed  Google Scholar 

  • Bello A, Quinn M, Perry M, Milton D (2009) Characterization of occupational exposures to cleaning products used for common cleaning tasks-a pilot study of hospital cleaners. Environ Heal 8(1):11

    Google Scholar 

  • Beloin C, Renard S, Ghigo J-M, Lebeaux D (2014) Novel approaches to combat bacterial biofilms. Curr Opin Pharmacol 18:61–68. http://dx.doi.org/10.1016/j.coph.2014.09.005

    CAS  PubMed  Google Scholar 

  • Bielecki TM, Gazdzik TS, Arendt J, Szczepanski T, Król W, Wielkoszynski T (2007) Antibacterial effect of autologous platelet gel enriched with growth factors and other active substances: an in vitro study. J Bone Joint Surg Br 89-B(3):417–420. doi:10.1302/0301-620x.89b3.18491

    Google Scholar 

  • Billings N, Ramirez Millan M, Caldara M, Rusconi R, Tarasova Y, Stocker R, Ribbeck K (2013) The extracellular matrix component Psl provides fast-acting antibiotic defense in <italic>Pseudomonas aeruginosa</italic> iofilms. PLoS Pathog 9(8):e1003526. doi:10.1371/journal.ppat.1003526

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bower CK, Parker JE, Higgins AZ, Oest ME, Wilson JT, Valentine BA, Bothwell MK, McGuire J (2002) Protein antimicrobial barriers to bacterial adhesion: in vitro and in vivo evaluation of nisin-treated implantable materials. Colloids Surf B: Biointerfaces 25(1):81–90. http://dx.doi.org/10.1016/S0927-7765(01)00318-6

    CAS  Google Scholar 

  • Braff MH, Zaiou M, Fierer J, Nizet V, Gallo RL (2005) Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens. Infect Immun 73(10):6771–6781. doi:10.1128/iai.73.10.6771-6781.2005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M-C (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419. doi:10.1093/toxsci/kfi256

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. doi:10.1038/nrmicro1098

    CAS  PubMed  Google Scholar 

  • Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38(3):217–225. http://dx.doi.org/10.1016/j.ijantimicag.2011.05.004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cashman J, Jackson J, Mugabe C, Gilchrist S, Ball K, Tredwell S, Burt H (2013) The use of tissue sealants to deliver antibiotics to an orthopaedic surgical site with a titanium implant. J Orthop Sci 18(1):165–174. doi:10.1007/s00776-012-0325-6

    CAS  PubMed  Google Scholar 

  • Cava F, de Pedro MA (2014) Peptidoglycan plasticity in bacteria: emerging variability of the murein sacculus and their associated biological functions. Curr Opin Microbiol 18:46–53. http://dx.doi.org/10.1016/j.mib.2014.01.004

    CAS  PubMed  Google Scholar 

  • Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Åberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ (2009) Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5(12):913–919. doi:10.1038/nchembio.242

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chandorkar Y, Bhaskar N, Madras G, Basu B (2015) Long term, sustained release of salicylic acid from crosslinked. Biodegradable polyesters induces reduced foreign body response in mice. Biomacromolecules. doi:10.1021/bm5017282

    PubMed  Google Scholar 

  • Chauhan A, Bernardin A, Mussard W, Kriegel I, Estève M, Ghigo J-M, Beloin C, Semetey V (2014) Preventing biofilm formation and associated occlusion by biomimetic glycocalyx-like polymer in central venous catheters. J Infect Dis. doi:10.1093/infdis/jiu249

    Google Scholar 

  • Chen X, Su Y, Shen F, Wan Y (2011) Antifouling ultrafiltration membranes made from PAN-b-PEG copolymers: effect of copolymer composition and PEG chain length. J Membr Sci 384(1–2):44–51. http://dx.doi.org/10.1016/j.memsci.2011.09.002

    CAS  Google Scholar 

  • Chen N-H, Chung C-J, Chiang C-C, Chen K-C, He J-L (2014) Antimicrobial copper-containing titanium nitride coatings Co-deposited by arc ion plating/magnetron sputtering for protective and decorative purposes. Surf Coat Technol 253:83–88. http://dx.doi.org/10.1016/j.surfcoat.2014.05.017

    CAS  Google Scholar 

  • Cheng G, Xue H, Zhang Z, Chen S, Jiang S (2008) A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed 47(46):8831–8834. doi:10.1002/anie.200803570

    CAS  Google Scholar 

  • Cheng L, Weir MD, Xu HHK, Antonucci JM, Kraigsley AM, Lin NJ, Lin-Gibson S, Zhou X (2012) Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater 28(5):561–572. http://dx.doi.org/10.1016/j.dental.2012.01.005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52(6):1636–1653. doi:10.1002/anie.201205923

    CAS  Google Scholar 

  • Chorley B, Ward W, Simmons SO, Vallanat B, Veronesi B (2014) The cellular and genomic response of rat dopaminergic neurons (N27) to coated nanosilver. NeuroToxicology 45:12–21. http://dx.doi.org/10.1016/j.neuro.2014.08.010

    CAS  PubMed  Google Scholar 

  • Christian WV, Oliver LD, Paustenbach DJ, Kreider ML, Finley BL (2014) Toxicology-based cancer causation analysis of CoCr-containing hip implants: a quantitative assessment of genotoxicity and tumorigenicity studies. J Appl Toxicol 34(9):939–967. doi:10.1002/jat.3039

    CAS  PubMed  Google Scholar 

  • Claessen D, Rozen DE, Kuipers OP, Sogaard-Andersen L, van Wezel GP (2014) Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol 12(2):115–124. doi:10.1038/nrmicro3178

    CAS  PubMed  Google Scholar 

  • Claridge JA, Banerjee A, Kelly KB, Leukhardt WH, Carter JW, Haridas M, Malangoni MA (2014) Bacterial species-specific hospital mortality rate for intra-abdominal infections. Surg Infect 15(3):194–199. doi:10.1089/sur.2011.039

    Google Scholar 

  • Cleophas RTC, Riool M, Quarles Van Ufford HC, Zaat SAJ, Kruijtzer JAW, Liskamp RMJ (2014) Convenient preparation of bactericidal hydrogels by covalent attachment of stabilized antimicrobial peptides using thiol–ene click chemistry. ACS Macro Lett 3(5):477–480. doi:10.1021/mz5001465

    CAS  Google Scholar 

  • Courvalin P (2006) Vancomycin resistance in gram-positive cocci. Clin Infect Dis 42(Supplement 1):S25–S34. doi:10.1086/491711

    CAS  PubMed  Google Scholar 

  • Cronholm P, Karlsson HL, Hedberg J, Lowe TA, Winnberg L, Elihn K, Wallinder IO, Möller L (2013) Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small 9(7):970–982. doi:10.1002/smll.201201069

    CAS  PubMed  Google Scholar 

  • Duong HTT, Jung K, Kutty SK, Agustina S, Adnan NNM, Basuki JS, Kumar N, Davis TP, Barraud N, Boyer C (2014) Nanoparticle (star polymer) delivery of nitric oxide effectively negates Pseudomonas aeruginosa biofilm formation. Biomacromolecules 15(7):2583–2589. doi:10.1021/bm500422v

    CAS  PubMed  Google Scholar 

  • Dutot M, Liang H, Pauloin T, Brignole-Baudouin F, Baudouin C, Warnet J-M, Rat P (2008a) Effects of toxic cellular stresses and divalent cations on the human P2X7 cell death receptor. Mol Vis 14:889–897

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dutot M, Warnet J-M, Baudouin C, Rat P (2008b) Cytotoxicity of contact lens multipurpose solutions: role of oxidative stress, mitochondrial activity and P2X7 cell death receptor activation. Eur J Pharm Sci 33(2):138–145. http://dx.doi.org/10.1016/j.ejps.2007.10.006

    CAS  PubMed  Google Scholar 

  • Eckert R, Qi F, Yarbrough DK, He J, Anderson MH, Shi W (2006) Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrob Agents Chemother 50(4):1480–1488. doi:10.1128/aac.50.4.1480-1488.2006

    PubMed Central  CAS  PubMed  Google Scholar 

  • Etayash H, Norman L, Thundat T, Stiles M, Kaur K (2013) Surface-conjugated antimicrobial peptide leucocin a displays high binding to pathogenic gram-positive bacteria. ACS Appl Mater Interfaces 6(2):1131–1138. doi:10.1021/am404729c

    Google Scholar 

  • Faber M, Leysen J, Bridts C, Sabato V, De Clerck LS, Ebo DG (2012) Allergy to chlorhexidine: beware of the central venous catheter. Acta Anaesthesiol Belg 63(4):191–194

    CAS  PubMed  Google Scholar 

  • Fadeeva E, Truong VK, Stiesch M, Chichkov BN, Crawford RJ, Wang J, Ivanova EP (2011) Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir 27(6):3012–3019. doi:10.1021/la104607g

    CAS  PubMed  Google Scholar 

  • Fan JH, Hung WI, Li WT, Yeh JM (2009) Biocompatibility study of gold nanoparticles to human cells. In: Lim C, Goh JH (eds) 13th international conference on biomedical engineering, vol 23. IFMBE proceedings. Springer, Berlin, pp 870–873. doi:10.1007/978-3-540-92841-6_214

  • Fernandez-Lopez S, Kim H-S, Choi EC, Delgado M, Granja JR, Khasanov A, Kraehenbuehl K, Long G, Weinberger DA, Wilcoxen KM, Ghadiri MR (2001) Antibacterial agents based on the cyclic d, l-[alpha]-peptide architecture. Nature 412(6845):452–455

    CAS  PubMed  Google Scholar 

  • Fitzgerald-Hughes D, Devocelle M, Humphreys H (2012) Beyond conventional antibiotics for the future treatment of methicillin-resistant Staphylococcus aureus infections: two novel alternatives. FEMS Immunol Med Microbiol 65(3):399–412. doi:10.1111/j.1574-695X.2012.00954.x

    CAS  PubMed  Google Scholar 

  • Forbes S, McBain AJ, Felton-Smith S, Jowitt TA, Birchenough HL, Dobson CB (2013) Comparative surface antimicrobial properties of synthetic biocides and novel human apolipoprotein E derived antimicrobial peptides. Biomaterials 34(22):5453–5464. http://dx.doi.org/10.1016/j.biomaterials.2013.03.087

    CAS  PubMed  Google Scholar 

  • Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol 59(3):227–238. doi:10.1111/j.1574-695X.2010.00665.x

    CAS  PubMed  Google Scholar 

  • Francolini I, Donelli G, Crisante F, Taresco V, Piozzi A (2015) Antimicrobial polymers for anti-biofilm medical devices: state-of-art and perspectives. In: Donelli G (ed) Biofilm-based healthcare-associated infections. Advances in experimental medicine and biology, vol 831. Springer International Publishing, Switzerland, pp 93–117. doi:10.1007/978-3-319-09782-4_7

    Google Scholar 

  • Friedlander RS, Vlamakis H, Kim P, Khan M, Kolter R, Aizenberg J (2013) Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proc Natl Acad Sci 110(14):5624–5629. doi:10.1073/pnas.1219662110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fu C, Liu T, Li L, Liu H, Liang Q, Meng X (2015) Effects of graphene oxide on the development of offspring mice in lactation period. Biomaterials 40:23–31. http://dx.doi.org/10.1016/j.biomaterials.2014.11.014

    PubMed  Google Scholar 

  • Gajski G, Jelčić Ž, Oreščanin V, Gerić M, Kollar R, Garaj-Vrhovac V (2014) Physico-chemical characterization and the in vitro genotoxicity of medical implants metal alloy (TiAlV and CoCrMo) and polyethylene particles in human lymphocytes. Biochim Biophys Acta Gen Subj 1840(1):565–576. http://dx.doi.org/10.1016/j.bbagen.2013.10.015

    CAS  Google Scholar 

  • Gan X, Liu T, Zhong J, Liu X, Li G (2004) Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin. ChemBioChem 5(12):1686–1691. doi:10.1002/cbic.200400080

    CAS  PubMed  Google Scholar 

  • Gao P, Nie X, Zou M, Shi Y, Cheng G (2011) Recent advances in materials for extended-release antibiotic delivery system. J Antibiot 64(9):625–634

    CAS  PubMed  Google Scholar 

  • Gening ML, Titov DV, Cecioni S, Audfray A, Gerbst AG, Tsvetkov YE, Krylov VB, Imberty A, Nifantiev NE, Vidal S (2013) Synthesis of multivalent carbohydrate-centered glycoclusters as nanomolar ligands of the bacterial lectin LecA from Pseudomonas aeruginosa. Chem Eur J 19(28):9272–9285. doi:10.1002/chem.201300135

    CAS  PubMed  Google Scholar 

  • Gérard C, Bordeleau L-J, Barralet J, Doillon CJ (2010) The stimulation of angiogenesis and collagen deposition by copper. Biomaterials 31(5):824–831. http://dx.doi.org/10.1016/j.biomaterials.2009.10.009

    PubMed  Google Scholar 

  • Gerdes K, Maisonneuve E (2012) Bacterial persistence and toxin-antitoxin loci. Annu Rev Microbiol 66(1):103–123. doi:10.1146/annurev-micro-092611-150159

    CAS  PubMed  Google Scholar 

  • Germain E, Castro-Roa D, Zenkin N, Gerdes K (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52(2):248–254. doi:10.1016/j.molcel.2013.08.045

  • Gnanadhas DP, Ben Thomas M, Thomas R, Raichur AM, Chakravortty D (2013) Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob Agents Chemother 57(10):4945–4955. doi:10.1128/aac.00152-13

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grainger DW, van der Mei HC, Jutte PC, van den Dungen JJAM, Schultz MJ, van der Laan BFAM, Zaat SAJ, Busscher HJ (2013) Critical factors in the translation of improved antimicrobial strategies for medical implants and devices. Biomaterials 34(37):9237–9243. http://dx.doi.org/10.1016/j.biomaterials.2013.08.043

    CAS  PubMed  Google Scholar 

  • Guiton PS, Cusumano CK, Kline KA, Dodson KW, Han Z, Janetka JW, Henderson JP, Caparon MG, Hultgren SJ (2012) Combinatorial small-molecule therapy prevents uropathogenic Escherichia coli catheter-associated urinary tract infections in mice. Antimicrob Agents Chemother 56(9):4738–4745. doi:10.1128/aac.00447-12

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guleri A, Kumar A, Morgan RJM, Hartley M, Roberts DH (2012) Anaphylaxis to chlorhexidine-coated central venous catheters: a case series and review of the literature. Surg Infect 13(3):171–174. doi:10.1089/sur.2011.011

    Google Scholar 

  • Hale JDF, Hancock REW (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti-Infect Ther 5(6):951–959. doi:10.1586/14787210.5.6.951

    CAS  PubMed  Google Scholar 

  • Hamuro Y, Schneider JP, Degrado WF (1999) De novo design of antibacterial β-peptides. J Am Chem Soc 121(51):12200–12201. doi:10.1021/ja992728p

    CAS  Google Scholar 

  • Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotech 24(12):1551–1557

    CAS  Google Scholar 

  • Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M, Yazdankhah SP (2010) Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb Drug Resist 16:91+

    CAS  PubMed  Google Scholar 

  • Hennessey DB, Burke JP, Ni-Dhonochu T, Shields C, Winter DC, Mealy K (2010) Preoperative hypoalbuminemia is an independent risk factor for the development of surgical site infection following gastrointestinal surgery: a multi-institutional study. Ann Surg 252(2):325–329 310.1097/SLA.1090b1013e3181e9819a

    PubMed  Google Scholar 

  • Hogan S, Stevens NT, Humphreys H, O’Gara JP, O’Neill E (2015) Current and future approaches to the prevention and treatment of staphylococcal medical device-related infections. Curr Pharm Des 21(1):100–113

    CAS  PubMed  Google Scholar 

  • Holden DW (2015) Persisters unmasked. Science 347(6217):30–32. doi:10.1126/science.1262033

    CAS  PubMed  Google Scholar 

  • Hook AL, Chang C-Y, Yang J, Luckett J, Cockayne A, Atkinson S, Mei Y, Bayston R, Irvine DJ, Langer R, Anderson DG, Williams P, Davies MC, Alexander MR (2012) Combinatorial discovery of polymers resistant to bacterial attachment. Nat Biotechnol 30(9):868–875. doi:10.1038/nbt.2316. http://www.nature.com/nbt/journal/v30/n9/abs/nbt.2316.html#supplementary-information

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hsin Y-H, Chen C-F, Huang S, Shih T-S, Lai P-S, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179(3):130–139. http://dx.doi.org/10.1016/j.toxlet.2008.04.015

    CAS  PubMed  Google Scholar 

  • Imura Y, Choda N, Matsuzaki K (2008) Magainin 2 in action: distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys J 95(12):5757–5765. http://dx.doi.org/10.1529/biophysj.108.133488

    PubMed Central  PubMed  Google Scholar 

  • Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, Baulin VA, Pogodin S, Wang JY, Tobin MJ, Löbbe C, Crawford RJ (2012) Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small 8(16):2489–2494. doi:10.1002/smll.201200528

    CAS  PubMed  Google Scholar 

  • Ivanova EP, Hasan J, Webb HK, Gervinskas G, Juodkazis S, Truong VK, Wu AHF, Lamb RN, Baulin VA, Watson GS, Watson JA, Mainwaring DE, Crawford RJ (2013) Bactericidal activity of black silicon. Nat Commun 4. doi:10.1038/ncomms3838

  • Jacobs T, Morent R, De Geyter N, Dubruel P, Leys C (2012) Plasma surface modification of biomedical polymers: influence on cell-material interaction. Plasma Chem Plasma Process 32(5):1039–1073. doi:10.1007/s11090-012-9394-8

    CAS  Google Scholar 

  • Jadalannagari S, Deshmukh K, Ramanan S, Kowshik M (2014) Antimicrobial activity of hemocompatible silver doped hydroxyapatite nanoparticles synthesized by modified sol–gel technique. Appl Nanosci 4(2):133–141. doi:10.1007/s13204-013-0197-x

    CAS  Google Scholar 

  • Jamal MA, Rosenblatt JS, Hachem RY, Ying J, Pravinkumar E, Nates JL, Chaftari A-MP, Raad II (2014) Prevention of biofilm colonization by Gram-negative bacteria on minocycline-rifampin-impregnated catheters sequentially coated with chlorhexidine. Antimicrob Agents Chemother 58(2):1179–1182. doi:10.1128/aac.01959-13

    PubMed Central  PubMed  Google Scholar 

  • Jayathillake A, Mason DF, Broome K (2003) Allergy to chlorhexidine gluconate in urethral gel: report of four cases and review of the literature. Urology 61(4):837. doi:10.1016/S0090-4295(02)02432-9

  • Jo YK, Seo JH, Choi B-H, Kim BJ, Shin HH, Hwang BH, Cha HJ (2014) Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue. ACS Appl Mater Interfaces 6(22):20242–20253. doi:10.1021/am505784k

    CAS  PubMed  Google Scholar 

  • Johnson JR, Johnston B, Kuskowski MA (2012) In vitro comparison of nitrofurazone- and silver alloy-coated foley catheters for contact-dependent and diffusible inhibition of urinary tract infection-associated microorganisms. Antimicrob Agents Chemother 56(9):4969–4972. doi:10.1128/aac.00733-12

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jun E-A, Lim K-M, Kim K, Bae O-N, Noh J-Y, Chung K-H, Chung J-H (2011) Silver nanoparticles enhance thrombus formation through increased platelet aggregation and procoagulant activity. Nanotoxicology 5(2):157–167. doi:10.3109/17435390.2010.506250

    CAS  PubMed  Google Scholar 

  • Justice SS, Harrison A, Becknell B, Mason KM (2014) Bacterial differentiation, development, and disease: mechanisms for survival. FEMS Microbiol Lett 360(1):1–8. doi:10.1111/1574-6968.12602

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kalaivani S, Singh RK, Ganesan V, Kannan S (2014) Effect of copper (Cu2+) inclusion on the bioactivity and antibacterial behavior of calcium silicate coatings on titanium metal. J Mater Chem B 2(7):846–858. doi:10.1039/C3TB21522A

    CAS  Google Scholar 

  • Karahalil B, Kadioglu E, Tuzuner-Oncul AM, Cimen E, Emerce E, Kisnisci RS (2014) Micronucleus assay assessment of possible genotoxic effects in patients treated with titanium alloy endosseous implants or miniplates. Mutat Res/Genet Toxicol Environ Mutagen 760:70–72. http://dx.doi.org/10.1016/j.mrgentox.2013.10.005

    CAS  Google Scholar 

  • Karlsson HL, Cronholm P, Hedberg Y, Tornberg M, De Battice L, Svedhem S, Wallinder IO (2013) Cell membrane damage and protein interaction induced by copper containing nanoparticles—Importance of the metal release process. Toxicology 313(1):59–69. http://dx.doi.org/10.1016/j.tox.2013.07.012

    CAS  PubMed  Google Scholar 

  • Karlsson J, Sundell G, Thuvander M, Andersson M (2014) Atomically resolved tissue integration. Nano Lett 14(8):4220–4223. doi:10.1021/nl501564f

    CAS  PubMed  Google Scholar 

  • Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43(15):6046–6051. doi:10.1021/es900754q

    CAS  PubMed  Google Scholar 

  • Khan W, Challa V, Pawar R, Nyska M, Brin Y, Domb A (2014) Antibiotics delivery for treating bone infections. In: Domb AJ, Khan W (eds) Focal controlled drug delivery. Advances in delivery science and technology. Springer, New York, pp 459–472. doi:10.1007/978-1-4614-9434-8_21

    Google Scholar 

  • Khoo A, Oziemski P (2011) Chlorhexidine impregnated central venous catheter inducing an anaphylactic shock in the intensive care unit. Heart Lung Circ 20(10):669–670. http://dx.doi.org/10.1016/j.hlc.2010.10.001

    CAS  PubMed  Google Scholar 

  • Kilic E, Er N, Alkan A, Ferahbas A (2011) Accidental benzalkonium chloride (zephiran) injection. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112(6):e103–e105. doi:10.1016/j.tripleo.2011.06.004

  • Kim S, Choi JE, Choi J, Chung K-H, Park K, Yi J, Ryu D-Y (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol in Vitro 23(6):1076–1084. http://dx.doi.org/10.1016/j.tiv.2009.06.001

    CAS  PubMed  Google Scholar 

  • Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3(1):340–366

    CAS  Google Scholar 

  • Kottur J, Sharma A, Gore Kiran R, Narayanan N, Samanta B, Pradeepkumar PI, Nair Deepak T (2015) Unique structural features in DNA polymerase IV enable efficient bypass of the N2 adduct induced by the nitrofurazone antibiotic. Structure 23(1):56–67. http://dx.doi.org/10.1016/j.str.2014.10.019

    CAS  PubMed  Google Scholar 

  • Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD (2011) Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res 22(4):349–356. doi:10.1111/j.1600-0501.2011.02172.x

    PubMed  Google Scholar 

  • Laroux FS, Pavlick KP, Hines IN, Kawachi S, Harada H, Bharwani S, Hoffman JM, Grisham MB (2001) Role of nitric oxide in inflammation. Acta Physiol Scand 173(1):113–118. doi:10.1046/j.1365-201X.2001.00891.x

    CAS  PubMed  Google Scholar 

  • Lenaeus MJ, Burdette D, Wagner T, Focia PJ, Gross A (2014) Structures of KcsA in complex with symmetrical quaternary ammonium compounds reveal a hydrophobic binding site. Biochemistry 53(32):5365–5373. doi:10.1021/bi500525s

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li P, Poon YF, Li W, Zhu H-Y, Yeap SH, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman RW, Kang E-T, Mu Y, Li CM, Chang MW, Jan Leong SS, Chan-Park MB (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10(2):149–156. http://www.nature.com/nmat/journal/v10/n2/abs/nmat2915.html#supplementary-information

    CAS  PubMed  Google Scholar 

  • Li X, Wang L, Fan Y, Feng Q, Cui F-z (2012) Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater 2012:19. doi:10.1155/2012/548389

    Google Scholar 

  • Li Y, Heine S, Entian M, Sauer K, Frankenberg-Dinkel N (2013) NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT domain-coupled phosphodiesterase. J Bacteriol 195(16):3531–3542. doi:10.1128/jb.01156-12

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lih E, Oh SH, Joung YK, Lee JH, Han DK (2015) Polymers for cell/tissue anti-adhesion. Progress in Polymer Science. http://dx.doi.org/10.1016/j.progpolymsci.2014.10.004

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schaberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nat Adv Online Publ. doi:10.1038/nature14098. http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature14098.html#supplementary-information

    Google Scholar 

  • Lisanti M, Piolanti N, Tagliaferri E, Andreani L, Parchi P, Menichetti F (2015) The fight against the slime: can we ever win? In: Baldini A, Caldora P (eds) Perioperative medical management for total joint arthroplasty. Springer International Publishing, Switzerland, pp 253–267. doi:10.1007/978-3-319-07203-6_21

    Google Scholar 

  • Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5(9):6971–6980. doi:10.1021/nn202451x

    CAS  PubMed  Google Scholar 

  • Liu H, Zhang D, Shen F, Zhang G, Song S (2012a) Hemocompatibility and anti-endothelialization of copper–titanium coating for vena cava filters. Surf Coat Technol 206(16):3501–3507. http://dx.doi.org/10.1016/j.surfcoat.2012.02.025

    CAS  Google Scholar 

  • Liu W-d, Zhang Y-h, Fang L-f, Zhu B-k, Zhu L-p (2012b) Antifouling properties of poly(vinyl chloride) membranes modified by amphiphilic copolymers P(MMA-b-MAA). Chin J Polym Sci 30(4):568–577. doi:10.1007/s10118-012-1153-z

    CAS  Google Scholar 

  • Liu X, Xu Y, Wu Z, Chen H (2013a) Poly(N-vinylpyrrolidone)-modified surfaces for biomedical applications. Macromol Biosci 13(2):147–154. doi:10.1002/mabi.201200269

    PubMed  Google Scholar 

  • Liu Y, Yang Y, Wang C, Zhao X (2013b) Stimuli-responsive self-assembling peptides made from antibacterial peptides. Nanoscale 5(14):6413–6421. doi:10.1039/c3nr00225j

    CAS  PubMed  Google Scholar 

  • Liu X, Huang R, Su R, Qi W, Wang L, He Z (2014) Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors. ACS Appl Mater Interfaces 6(15):13034–13042. doi:10.1021/am502921z

    CAS  PubMed  Google Scholar 

  • Lo AWH, Van de Water K, Gane PJ, Chan AWE, Steadman D, Stevens K, Selwood DL, Waksman G, Remaut H (2013) Suppression of type 1 pilus assembly in uropathogenic Escherichia coli by chemical inhibition of subunit polymerization. J Antimicrob Chemother. doi:10.1093/jac/dkt467

    PubMed Central  Google Scholar 

  • Ma J, Zhang J, Xiong Z, Yong Y, Zhao XS (2011) Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem 21(10):3350–3352. doi:10.1039/C0JM02806A

    CAS  Google Scholar 

  • Maeda H, Uehara A, Saito T, Mayanagi H, Nagaoka I, Takada H (2007) An antibacterial protein CAP18/LL-37 enhanced production of hepatocyte growth factor in human gingival fibroblast cultures. In: Watanabe M, Okuno O, Sasaki K, Takahashi N, Suzuki O, Takada H (eds) Interface oral health science 2007. Springer, Tokyo, Japan, pp 283–284. doi:10.1007/978-4-431-76690-2_55

    Google Scholar 

  • Maisonneuve E, Shakespeare LJ, Jørgensen MG, Gerdes K (2011) Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci 108(32):13206–13211. doi:10.1073/pnas.1100186108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martín VI, de la Haba RR, Ventosa A, Congiu E, Ortega-Calvo JJ, Moyá ML (2014) Colloidal and biological properties of cationic single-chain and dimeric surfactants. Colloids Surf B: Biointerfaces 114:247–254. http://dx.doi.org/10.1016/j.colsurfb.2013.10.017

    PubMed  Google Scholar 

  • Mazzotti F, Beuttler J, Zeller R, Fink U, Schindler S, Wendel A, Hartung T, von Aulock S (2007) In vitro pyrogen test—a new test method for solid medical devices. J Biomed Mater Res A 80A(2):276–282. doi:10.1002/jbm.a.30922

    CAS  Google Scholar 

  • Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun 390(3):733–737. http://dx.doi.org/10.1016/j.bbrc.2009.10.039

    CAS  PubMed  Google Scholar 

  • Moalli P, Brown B, Reitman MF, Nager C (2014) Polypropylene mesh: evidence for lack of carcinogenicity. Int Urogynecol J 25(5):573–576. doi:10.1007/s00192-014-2343-8

    PubMed  Google Scholar 

  • Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ (2013) Silver enhances antibiotic activity against Gram-negative bacteria. Sci Transl Med 5(190):190ra181. doi:10.1126/scitranslmed.3006276

    Google Scholar 

  • Mouriño V, Cattalini JP, Boccaccini AR (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 9(68):401–419

    PubMed Central  PubMed  Google Scholar 

  • Muffly TM, Tizzano AP, Walters MD (2011) The history and evolution of sutures in pelvic surgery. J R Soc Med 104(3):107–112. doi:10.1258/jrsm.2010.100243

    PubMed Central  PubMed  Google Scholar 

  • Muszanska AK, Rochford ETJ, Gruszka A, Bastian AA, Busscher HJ, Norde W, van der Mei HC, Herrmann A (2014) Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules 15(6):2019–2026. doi:10.1021/bm500168s

    CAS  PubMed  Google Scholar 

  • Nait Chabane Y, Mlouka M, Alexandre S, Nicol M, Marti S, Pestel-Caron M, Vila J, Jouenne T, De E (2014) Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. BMC Microbiol 14(1):62

    PubMed Central  PubMed  Google Scholar 

  • Neumayer L, Hosokawa P, Itani K, El-Tamer M, Henderson WG, Khuri SF (2007) Multivariable predictors of postoperative surgical site infection after general and vascular surgery: results from the patient safety in surgery study. J Am Coll Surg 204(6):1178–1187. http://dx.doi.org/10.1016/j.jamcollsurg.2007.03.022

    PubMed  Google Scholar 

  • Ng VWL, Tan JPK, Leong J, Voo ZX, Hedrick JL, Yang YY (2014) Antimicrobial polycarbonates: investigating the impact of nitrogen-containing heterocycles as quaternizing agents. Macromolecules 47(4):1285–1291. doi:10.1021/ma402641p

    CAS  Google Scholar 

  • Nikitushkin V, Demina G, Shleeva M, Kaprelyants A (2013) Peptidoglycan fragments stimulate resuscitation of “non-culturable” mycobacteria. Antonie Van Leeuwenhoek 103(1):37–46. doi:10.1007/s10482-012-9784-1

    CAS  PubMed  Google Scholar 

  • Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414(6862):454–457

    CAS  PubMed  Google Scholar 

  • O’Connell HA, Kottkamp GS, Eppelbaum JL, Stubblefield BA, Gilbert SE, Gilbert ES (2006) Influences of biofilm structure and antibiotic resistance mechanisms on indirect pathogenicity in a model polymicrobial biofilm. Appl Environ Microbiol 72(7):5013–5019. doi:10.1128/aem.02474-05

    PubMed Central  PubMed  Google Scholar 

  • O’Toole JE, Eichholz KM, Fessler RG (2009) Surgical site infection rates after minimally invasive spinal surgery. J Neurosurg Spine 11(4):471–476. doi:10.3171/2009.5.SPINE08633

    PubMed  Google Scholar 

  • Olsen MA, Nepple JJ, Riew KD, Lenke LG, Bridwell KH, Mayfield J, Fraser VJ (2008) Risk factors for surgical site infection following orthopaedic spinal operations. J Bone Joint Surg 90(1):62–69

    PubMed  Google Scholar 

  • Opstrup MS, Malling HJ, Krøigaard M, Mosbech H, Skov PS, Poulsen LK, Garvey LH (2014) Standardized testing with chlorhexidine in perioperative allergy – a large single-centre evaluation. Allergy 69(10):1390–1396. doi:10.1111/all.12466

    CAS  PubMed  Google Scholar 

  • Ordikhani F, Tamjid E, Simchi A (2014) Characterization and antibacterial performance of electrodeposited chitosan–vancomycin composite coatings for prevention of implant-associated infections. Mater Sci Eng C 41:240–248. http://dx.doi.org/10.1016/j.msec.2014.04.036

    CAS  Google Scholar 

  • Oren Z, Shai Y (2000) Cyclization of a cytolytic amphipathic α-helical peptide and its diastereomer: effect on structure, interaction with model membranes, and biological function†. Biochemistry 39(20):6103–6114. doi:10.1021/bi992408i

    CAS  PubMed  Google Scholar 

  • Owens CD, Stoessel K (2008) Surgical site infections: epidemiology, microbiology and prevention. J Hosp Infect 70(Supplement 2):3–10. http://dx.doi.org/10.1016/S0195-6701(08)60017-1

    PubMed  Google Scholar 

  • Panyutich AV, Voitenok NN, Lehrer RI, Ganz T (1991) An enzyme immunoassay for human defensins. J Immunol Methods 141(2):149–155. http://dx.doi.org/10.1016/0022-1759(91)90141-2

    CAS  PubMed  Google Scholar 

  • Park E-J, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol in Vitro 24(3):872–878. http://dx.doi.org/10.1016/j.tiv.2009.12.001

    CAS  PubMed  Google Scholar 

  • Patra P, Klumpp S (2013) Population dynamics of bacterial persistence. PLoS ONE 8(5):e62814. doi:10.1371/journal.pone.0062814

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perez E, Williams M, Jacob JT, Reyes MD, Chernetsky Tejedor S, Steinberg JP, Rowe L, Ganakammal SR, Changayil S, Weil MR, Donlan RM (2014) Microbial biofilms on needleless connectors for central venous catheters: comparison of standard and silver-coated devices collected from patients in an acute care hospital. J Clin Microbiol 52(3):823–831. doi:10.1128/jcm.02220-13

    PubMed Central  PubMed  Google Scholar 

  • Phillips J, O’Grady H, Baker E (2014) Prevention of surgical site infections. Surgery (Oxford) 32(9):468–471. http://dx.doi.org/10.1016/j.mpsur.2014.06.011

    Google Scholar 

  • Pittet B, Montandon D, Pittet D (2005) Infection in breast implants. Lancet Infect Dis 5(2):94–106. http://dx.doi.org/10.1016/S1473-3099(05)01281-8

    PubMed  Google Scholar 

  • Podila R, Moore T, Alexis F, Rao AM (2013) Graphene coatings for enhanced hemo-compatibility of nitinol stents. RSC Adv 3(6):1660–1665. doi:10.1039/C2RA23073A

    CAS  Google Scholar 

  • Porter EA, Wang X, Lee H-S, Weisblum B, Gellman SH (2000) Antibiotics: non-haemolytic [beta]-amino-acid oligomers. Nature 404(6778):565–565

    CAS  PubMed  Google Scholar 

  • Powers J-PS, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11):1681–1691. http://dx.doi.org/10.1016/j.peptides.2003.08.023

    CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83. http://dx.doi.org/10.1016/j.biotechadv.2008.09.002

    CAS  PubMed  Google Scholar 

  • Rapsch K, Bier FF, Tadros M, von Nickisch-Rosenegk M (2013) Identification of antimicrobial peptides and immobilization strategy suitable for a covalent surface coating with biocompatible properties. Bioconjug Chem 25(2):308–319. doi:10.1021/bc4004469

    Google Scholar 

  • Rathbone CR, Cross JD, Brown KV, Murray CK, Wenke JC (2011) Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res 29(7):1070–1074. doi:10.1002/jor.21343

    CAS  PubMed  Google Scholar 

  • Ravikumar M, Hageman DJ, Tomaszewski WH, Chandra GM, Skousen JL, Capadona JR (2014) The effect of residual endotoxin contamination on the neuroinflammatory response to sterilized intracortical microelectrodes. J Mater Chem B 2(17):2517–2529. doi:10.1039/C3TB21453B

    CAS  Google Scholar 

  • Ridgeway S, Wilson J, Charlet A, Kafatos G, Pearson A, Coello R (2005) Infection of the surgical site after arthroplasty of the hip. J Bone Joint Surg Br Vol 87-B(6):844–850. doi:10.1302/0301-620x.87b6.15121

    Google Scholar 

  • Rosenthal VD (2008) Device-associated nosocomial infections in limited-resources countries: findings of the International Nosocomial Infection Control Consortium (INICC). Am J Infect Control 36(10):S171.e177–S171.e112. http://dx.doi.org/10.1016/j.ajic.2008.10.009

    Google Scholar 

  • Ryder VJ, Chopra I, O’Neill AJ (2012) Increased mutability of Staphylococci in biofilms as a consequence of oxidative stress. PLoS ONE 7(10):e47695. doi:10.1371/journal.pone.0047695

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sahl H-G, Pag U, Bonness S, Wagner S, Antcheva N, Tossi A (2005) Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol 77(4):466–475. doi:10.1189/jlb.0804452

    CAS  PubMed  Google Scholar 

  • Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J Am Chem Soc 129(47):14793–14799. doi:10.1021/ja076300z

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salick DA, Pochan DJ, Schneider JP (2009) Design of an injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus. Adv Mater 21(41):4120–4123. doi:10.1002/adma.200900189

    CAS  Google Scholar 

  • Salwiczek M, Qu Y, Gardiner J, Strugnell RA, Lithgow T, Mclean KM, Thissen H (2014) Emerging rules for effective antimicrobial coatings. Trends Biotechnol 32(2):82–90. http://dx.doi.org/10.1016/j.tibtech.2013.09.008

    CAS  PubMed  Google Scholar 

  • Sambanthamoorthy K, Sloup RE, Parashar V, Smith JM, Kim EE, Semmelhack MF, Neiditch MB, Waters CM (2012) Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob Agents Chemother 56(10):5202–5211. doi:10.1128/aac.01396-12

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sambanthamoorthy K, Luo C, Pattabiraman N, Feng X, Koestler B, Waters CM, Palys TJ (2013) Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling 30(1):17–28. doi:10.1080/08927014.2013.832224

    PubMed Central  PubMed  Google Scholar 

  • Savage VJ, Chopra I, O’Neill AJ (2013) Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother 57(4):1968–1970. doi:10.1128/aac.02008-12

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shalev T, Gopin A, Bauer M, Stark RW, Rahimipour S (2012) Non-leaching antimicrobial surfaces through polydopamine bio-inspired coating of quaternary ammonium salts or an ultrashort antimicrobial lipopeptide. J Mater Chem 22(5):2026–2032. doi:10.1039/C1JM13994K

    CAS  Google Scholar 

  • Shamir ER, Warthan M, Brown SP, Nataro JP, Guerrant RL, Hoffman PS (2010) Nitazoxanide inhibits biofilm production and hemagglutination by enteroaggregative Escherichia coli strains by blocking assembly of AafA fimbriae. Antimicrob Agents Chemother 54(4):1526–1533. doi:10.1128/aac.01279-09

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharaf B, Jandali-Rifai M, Susarla SM, Dodson TB (2011) Do perioperative antibiotics decrease implant failure? J Oral Maxillofac Surg 69(9):2345–2350. http://dx.doi.org/10.1016/j.joms.2011.02.095

    PubMed  Google Scholar 

  • Sharma JN, Al-Omran A, Parvathy SS (2007) Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15(6):252–259. doi:10.1007/s10787-007-0013-x

    CAS  PubMed  Google Scholar 

  • Shetye GS, Singh N, Jia C, Nguyen CDK, Wang G, Luk Y-Y (2014) Specific maltose derivatives modulate the swarming motility of nonswarming mutant and inhibit bacterial adhesion and biofilm formation by Pseudomonas aeruginosa. ChemBioChem 15(10):1514–1523. doi:10.1002/cbic.201402093

    CAS  PubMed  Google Scholar 

  • Shimazaki K-i, Nam MS, Harakawa S, Tanaka T, Omata Y, Saito A, Kumura H, Mikawa K, Igarashi I, Suzuki N (1996) Monoclonal antibody against bovine lactoferricin(R) and its epitopic site. J Vet Med Sci 58(12):1227–1229. doi:10.1292/jvms.58.12_1227

    CAS  PubMed  Google Scholar 

  • Shimizu M, Shigeri Y, Tatsu Y, Yoshikawa S, Yumoto N (1998) Enhancement of antimicrobial activity of neuropeptide Y by N-terminal truncation. Antimicrob Agents Chemother 42(10):2745–2746

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shrivastava S, Bera T, Singh SK, Singh G, Ramachandrarao P, Dash D (2009) Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3(6):1357–1364. doi:10.1021/nn900277t

    CAS  PubMed  Google Scholar 

  • Silvestri DL, Mcenery-Stonelake M (2013) Chlorhexidine: uses and adverse reactions. Dermatitis 24(3):112–118 110.1097/DER.1090b1013e3182905561

    CAS  PubMed  Google Scholar 

  • Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762–764

    CAS  PubMed  Google Scholar 

  • Skousen JL, Bridge MJ, Tresco PA (2015) A strategy to passively reduce neuroinflammation surrounding devices implanted chronically in brain tissue by manipulating device surface permeability. Biomaterials 36:33–43. http://dx.doi.org/10.1016/j.biomaterials.2014.08.039

    CAS  PubMed  Google Scholar 

  • Smock KJ, Schmidt RL, Hadlock G, Stoddard G, Grainger DW, Munger MA (2014) Assessment of orally dosed commercial silver nanoparticles on human ex vivo platelet aggregation. Nanotoxicology 8(3):328–333. doi:10.3109/17435390.2013.788749

    CAS  PubMed  Google Scholar 

  • Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96–104. http://dx.doi.org/10.1016/j.mib.2014.02.008

    CAS  PubMed  Google Scholar 

  • Sørensen O, Cowland JB, Askaa J, Borregaard N (1997) An ELISA for hCAP-18, the cathelicidin present in human neutrophils and plasma. J Immunol Methods 206(1–2):53–59. http://dx.doi.org/10.1016/S0022-1759(97)00084-7

    PubMed  Google Scholar 

  • Sumner DR, Ross R, Purdue E (2014) Are there biological markers for wear or corrosion? A systematic review. Clin Orthop Relat Res 472(12):3728–3739. doi:10.1007/s11999-014-3580-3

    PubMed  Google Scholar 

  • Świercz R, Hałatek T, Stetkiewicz J, Wąsowicz W, Kur B, Grzelińska Z, Majcherek W (2013) Toxic effect in the lungs of rats after inhalation exposure to benzalkonium chloride. IJOMEH 26(4):647–656. doi:10.2478/s13382-013-0137-8

    PubMed  Google Scholar 

  • Taheri S, Cavallaro A, Christo SN, Smith LE, Majewski P, Barton M, Hayball JD, Vasilev K (2014) Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials 35(16):4601–4609. http://dx.doi.org/10.1016/j.biomaterials.2014.02.033

    CAS  PubMed  Google Scholar 

  • Takeshima K, Chikushi A, Lee K-K, Yonehara S, Matsuzaki K (2003) Translocation of analogues of the antimicrobial peptides magainin and buforin across human cell membranes. J Biol Chem 278(2):1310–1315. doi:10.1074/jbc.M208762200

    CAS  PubMed  Google Scholar 

  • Tamam E, Turkyilmaz I (2014) Effects of pH and elevated glucose levels on the electrochemical behavior of dental implants. J Oral Implantol 40(2):153–159. doi:10.1563/AAID-JOI-D-11-00083

    PubMed  Google Scholar 

  • Taylor A (1985) Therapeutic uses of trace elements. Clin Endocrinol Metab 14(3):703–724. http://dx.doi.org/10.1016/S0300-595X(85)80013-X

    CAS  PubMed  Google Scholar 

  • Taylor U, Barchanski A, Garrels W, Klein S, Kues W, Barcikowski S, Rath D (2012) Toxicity of gold nanoparticles on somatic and reproductive cells. In: Zahavy E, Ordentlich A, Yitzhaki S, Shafferman A (eds) Nano-biotechnology for biomedical and diagnostic research. Advances in experimental medicine and biology, vol 733. Springer, Dordrecht, pp 125–133. doi:10.1007/978-94-007-2555-3_12

    Google Scholar 

  • Tejero R, Anitua E, Orive G (2014) Toward the biomimetic implant surface: biopolymers on titanium-based implants for bone regeneration. Prog Polym Sci 39(7):1406–1447. http://dx.doi.org/10.1016/j.progpolymsci.2014.01.001

    CAS  Google Scholar 

  • Thakkar V, Ghobrial GM, Maulucci CM, Singhal S, Prasad SK, Harrop JS, Vaccaro AR, Behrend C, Sharan AD, Jallo J (2014) Nasal MRSA colonization: impact on surgical site infection following spine surgery. Clin Neurol Neurosurg 125:94–97. http://dx.doi.org/10.1016/j.clineuro.2014.07.018

    PubMed  Google Scholar 

  • Thomson KS, Korte FS, Giachelli CM, Ratner BD, Regnier M, Scatena M (2013) Prevascularized microtemplated fibrin scaffolds for cardiac tissue engineering applications. Tissue Eng A 19(7-8):967–977. doi:10.1089/ten.tea.2012.0286

    CAS  Google Scholar 

  • Tomasinsig L, Morgera F, Antcheva N, Pacor S, Skerlavaj B, Zanetti M, Tossi A (2009) Structure dependence of biological activities for primate cathelicidins. J Pept Sci 15(9):576–582. doi:10.1002/psc.1143

    CAS  PubMed  Google Scholar 

  • Totsika M, Kostakioti M, Hannan TJ, Upton M, Beatson SA, Janetka JW, Hultgren SJ, Schembri MA (2013) A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131. J Infect Dis 208(6):921–928. doi:10.1093/infdis/jit245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Triantafillopoulos I, Papaioannou N (2014) The effect of pharmacological agents on the bone-implant interface. In: Karachalios T (ed) Bone-implant interface in orthopedic surgery. Springer, London, pp 221–237. doi:10.1007/978-1-4471-5409-9_16

    Google Scholar 

  • Tu Q, Wang J-C, Liu R, He J, Zhang Y, Shen S, Xu J, Liu J, Yuan M-S, Wang J (2013) Antifouling properties of poly(dimethylsiloxane) surfaces modified with quaternized poly(dimethylaminoethyl methacrylate). Colloids Surf B: Biointerfaces 102:361–370. http://dx.doi.org/10.1016/j.colsurfb.2012.08.033

    CAS  PubMed  Google Scholar 

  • Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A (1986) The rate of killing of Escherichia coli byβ-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol 132(5):1297–1304. doi:10.1099/00221287-132-5-1297

    CAS  PubMed  Google Scholar 

  • Veiga AS, Sinthuvanich C, Gaspar D, Franquelim HG, Castanho MARB, Schneider JP (2012) Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials 33(35):8907–8916. http://dx.doi.org/10.1016/j.biomaterials.2012.08.046

    PubMed Central  CAS  PubMed  Google Scholar 

  • Veronesi B, Chorley B, Ward W, Simmons SO, Tennant A, Vallanat B (2014) The physicochemistry of capped nanosilver predicts its biological activity in rat brain endothelial cells (RBEC4). ACS Sustain Chem Eng 2(7):1566–1573. doi:10.1021/sc5000896

    CAS  Google Scholar 

  • Vetten MA, Yah CS, Singh T, Gulumian M (2014) Challenges facing sterilization and depyrogenation of nanoparticles: effects on structural stability and biomedical applications. Nanomed Nanotechnol Biol Med 10(7):1391–1399. http://dx.doi.org/10.1016/j.nano.2014.03.017

    CAS  Google Scholar 

  • Wang Z, Li N, Zhao J, White JC, Qu P, Xing B (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25(7):1512–1521. doi:10.1021/tx3002093

    CAS  PubMed  Google Scholar 

  • Wang Z, Chen Z, Zuo Q, Song F, Wu D, Cheng W, Fan W (2013) Reproductive toxicity in adult male rats following intra-articular injection of cobalt–chromium nanoparticles. J Orthop Sci 18(6):1020–1026. doi:10.1007/s00776-013-0458-2

    CAS  PubMed  Google Scholar 

  • Wang L, Su B, Cheng C, Ma L, Li S, Nie S, Zhao C-S (2014) Layer by Layer assembly of sulfonic poly(ether sulfone) as heparin-mimicking coatings: scalable fabrication of super-hemocompatible and antibacterial membranes. J Mater Chem B. doi:10.1039/C4TB01865F

    Google Scholar 

  • Wang R, Neoh KG, Kang E-T (2015) Integration of antifouling and bactericidal moieties for optimizing the efficacy of antibacterial coatings. J Colloid Interface Sci 438:138–148. http://dx.doi.org/10.1016/j.jcis.2014.09.070

    CAS  PubMed  Google Scholar 

  • Weissman C, Murray WB (2013) It’s not just another room…. Anesth Analg 117(2):287–289 210.1213/ANE.1210b1013e3182991c3182990e

    PubMed  Google Scholar 

  • Wong KKY, Liu X (2010) Silver nanoparticles-the real “silver bullet” in clinical medicine? MedChemComm 1(2):125–131. doi:10.1039/C0MD00069H

    CAS  Google Scholar 

  • Wu F, Meng G, He J, Wu Y, Wu F, Gu Z (2014) Antibiotic-loaded chitosan hydrogel with superior dual functions: antibacterial efficacy and osteoblastic cell responses. ACS Appl Mater Interfaces 6(13):10005–10013. doi:10.1021/am502537k

    CAS  PubMed  Google Scholar 

  • Xue Y, Hieda Y, Kimura K, Takayama K, Fujihara J, Tsujino Y (2004) Kinetic characteristics and toxic effects of benzalkonium chloride following intravascular and oral administration in rats. J Chromatogr B 811(1):53–58. http://dx.doi.org/10.1016/j.jchromb.2004.03.075

    CAS  Google Scholar 

  • Xue Y, Zhang S, Tang M, Zhang T, Wang Y, Hieda Y, Takeshita H (2012) Comparative study on toxic effects induced by oral or intravascular administration of commonly used disinfectants and surfactants in rats. J Appl Toxicol 32(7):480–487. doi:10.1002/jat.1662

    CAS  PubMed  Google Scholar 

  • Yang C, Ding X, Ono RJ, Lee H, Hsu LY, Tong YW, Hedrick J, Yang YY (2014) Brush-like polycarbonates containing dopamine, cations, and PEG providing a broad-spectrum, antibacterial, and antifouling surface via one-step coating. Adv Mater 26(43):7346–7351. doi:10.1002/adma.201402059

    CAS  PubMed  Google Scholar 

  • Ye Q, Zhou F (2015) Antifouling surfaces based on polymer brushes. In: Zhou F (ed) Antifouling surfaces and materials. Springer, Berlin, pp 55–81. doi:10.1007/978-3-662-45204-2_3

    Google Scholar 

  • Ye J, He J, Wang C, Yao K, Gou Z (2014) Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity. Biotechnol Lett 36(5):961–968. doi:10.1007/s10529-014-1465-x

    CAS  PubMed  Google Scholar 

  • Yeung AY, Gellatly S, Hancock RW (2011) Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci 68(13):2161–2176. doi:10.1007/s00018-011-0710-x

    CAS  PubMed  Google Scholar 

  • Yin LM, Edwards MA, Li J, Yip CM, Deber CM (2012) Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J Biol Chem 287(10):7738–7745. doi:10.1074/jbc.M111.303602

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu Q, Zhang Y, Wang H, Brash J, Chen H (2011) Anti-fouling bioactive surfaces. Acta Biomater 7(4):1550–1557. http://dx.doi.org/10.1016/j.actbio.2010.12.021

    CAS  PubMed  Google Scholar 

  • Yu X, Ning Z, Hua M, Wang C, Cui F (2013) Mechanical and biomedical properties of copper-containing diamond-like carbon films on magnesium alloys. J Mater Chem B 1(37):4773–4780. doi:10.1039/C3TB20570C

    CAS  Google Scholar 

  • Zaiou M, Nizet V, Gallo RL (2003) Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Investig Dermatol 120(5):810–816

    CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    CAS  PubMed  Google Scholar 

  • Zhang X, Oglęcka K, Sandgren S, Belting M, Esbjörner EK, Nordén B, Gräslund A (2010) Dual functions of the human antimicrobial peptide LL-37—target membrane perturbation and host cell cargo delivery. Biochim Biophys Acta Biomembr 1798(12):2201–2208. http://dx.doi.org/10.1016/j.bbamem.2009.12.011

    CAS  Google Scholar 

  • Zhao K, Tseng BS, Beckerman B, Jin F, Gibiansky ML, Harrison JJ, Luijten E, Parsek MR, Wong GCL (2013a) Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature 497(7449):388–391. doi:10.1038/nature12155. http://www.nature.com/nature/journal/v497/n7449/abs/nature12155.html#supplementary-information

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Y, Chen Z, Chen Y, Xu J, Li J, Jiang X (2013b) Synergy of non-antibiotic drugs and pyrimidinethiol on gold nanoparticles against superbugs. J Am Chem Soc 135(35):12940–12943. doi:10.1021/ja4058635

    CAS  PubMed  Google Scholar 

  • Zhao Z, Ni H, Han Z, Jiang T, Xu Y, Lu X, Ye P (2013c) Effect of surface compositional heterogeneities and microphase segregation of fluorinated amphiphilic copolymers on antifouling performance. ACS Appl Mater Interfaces 5(16):7808–7818. doi:10.1021/am401568b

    CAS  PubMed  Google Scholar 

  • Zheng J, Song W, Huang H, Chen H (2010) Protein adsorption and cell adhesion on polyurethane/Pluronic® surface with lotus leaf-like topography. Colloids Surf B: Biointerfaces 77(2):234–239. http://dx.doi.org/10.1016/j.colsurfb.2010.01.032

    CAS  PubMed  Google Scholar 

  • Zhou C, Li P, Qi X, Sharif ARM, Poon YF, Cao Y, Chang MW, Leong SSJ, Chan-Park MB (2011) A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials 32(11):2704–2712. http://dx.doi.org/10.1016/j.biomaterials.2010.12.040

    CAS  PubMed  Google Scholar 

  • Zhou Z, Calabrese DR, Taylor W, Finlay JA, Callow ME, Callow JA, Fischer D, Kramer EJ, Ober CK (2014) Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings. Biofouling 30(5):589–604. doi:10.1080/08927014.2014.897335

    CAS  PubMed  Google Scholar 

  • Zhu L-J, Zhu L-P, Yi Z, Jiang J-H, Zhu B-K, Xu Y-Y (2013) Hemocompatible and antibacterial porous membranes with heparinized copper hydroxide nanofibers as separation layer. Colloids Surf B: Biointerfaces 110:36–44. http://dx.doi.org/10.1016/j.colsurfb.2013.04.020

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bazaka, O., Bazaka, K. (2015). Cytotoxic Effects and Biocompatibility of Antimicrobial Materials. In: Ivanova, E., Crawford, R. (eds) Antibacterial Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-18594-1_7

Download citation

Publish with us

Policies and ethics