Skip to main content

Manufacture of Chemically Modified Antibacterial Surfaces

  • Chapter
Antibacterial Surfaces

Abstract

It is well-known that the prevention of biofilm formation on medical implants is a highly desirable outcome for world-wide patient care. The lack of new antibiotic discoveries and the build-up of resistance towards existing antibiotics, particularly in biofilms, are proving a major global challenge to infection control and causing high mortality rates, which is exacerbated by the contamination of implant surfaces. The chemical modification of implants has proved to be very promising in preventing bacterial attachment over the past few decades, but despite the huge consequential reduction in bacterial attachment rates, no solution yet exists for preventing the attachment of bacteria and the subsequent formation of biofilms; it is generally recognised in the field of biomaterials surface science that it is possible to change the rate but not the fate of biofilm formation. This chapter provides an overview of the state of the art in the field of manufacture of chemically modified surfaces that are produced in an effort to minimise the formation of biofilms. A summary of the role of adsorbed biomolecules present in the environment surrounding implants is provided. This is an additional complicating factor, since we hypothesise that preventing biomolecular adsorption onto the surface of implants is needed to resolve the issue of implant-centred infection. Such an outcome therefore requires the development of novel surface modification strategies and perhaps more than one concept to improve the effectiveness of a coating. In this respect we summarise techniques such as the use of hydrophilic polymer layers and plasma polymers, self-cleaning surfaces, and combinations of controlled release of bactericidal molecules. In addition, we propose other novel antibacterial surface modification strategies. We also highlight that preventing the initial attachment of bacteria is a fundamental requirement in preventing biofilm formation, since a biofilm can form once a single bacterium has attached to a substrate surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelghany SM, Quinn DJ, Ingram RJ, Gilmore BF, Donnelly RF, Taggart CC, Scott CJ (2012) Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int J Nanomedicine 7:4053

    PubMed Central  CAS  PubMed  Google Scholar 

  • Al-Badri ZM, Som A, Lyon S, Nelson CF, Nüsslein K, Tew GN (2008) Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers. Biomacromolecules 9(10):2805–2810

    CAS  PubMed  Google Scholar 

  • Al-Bataineh SA, Jasieniak M, Britcher LG, Griesser HJ (2008) TOF-SIMS and principal component analysis characterization of the multilayer surface grafting of small molecules: antibacterial furanones. Anal Chem 80(2):430–436

    CAS  PubMed  Google Scholar 

  • Allegranzi B, Nejad SB, Combescure C, Graafmans W, Attar H, Donaldson L, Pittet D (2011) Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet 377(9761):228–241

    Google Scholar 

  • Applerot G, Abu-Mukh R, Irzh A, Charmet J, Keppner H, Laux E, Guibert G, Gedanken A (2010) Decorating parylene-coated glass with ZnO nanoparticles for antibacterial applications: a comparative study of sonochemical, microwave, and microwave-plasma coating routes. ACS Appl Mater Interfaces 2(4):1052–1059

    CAS  PubMed  Google Scholar 

  • Augustin M, Ali-Vehmas T, Atroshi F (2004) Assessment of enzymatic cleaning agents and disinfectants against bacterial biofilms. J Pharm Pharm Sci 7:55–64

    CAS  PubMed  Google Scholar 

  • Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690–718

    CAS  PubMed  Google Scholar 

  • Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, Givskov M, Whitchurch CB, Engel JN, Tolker‐Nielsen T (2008) Roles of type IV pili, flagellum‐mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10(9):2331–2343

    CAS  PubMed  Google Scholar 

  • Bazaka K, Jacob MV, Truong VK, Wang F, Pushpamali WAA, Wang JY, Ellis AV, Berndt CC, Crawford RJ, Ivanova EP (2010) Plasma-enhanced synthesis of bioactive polymeric coatings from monoterpene alcohols: a combined experimental and theoretical study. Biomacromolecules 11(8):2016–2026

    CAS  PubMed  Google Scholar 

  • Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2011) Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater 7(5):2015–2028

    CAS  PubMed  Google Scholar 

  • Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2012) Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol 95(2):299–311

    CAS  PubMed  Google Scholar 

  • Bernbom N, Jørgensen RL, Ng Y, Meyer R, Kingshott P, Vejborg RM, Klemm P, Besenbacher F, Gram L (2006) Bacterial adhesion to stainless steel is reduced by aqueous fish extract coatings. Biofilms 3(01):25–36

    Google Scholar 

  • Bernbom N, Ng YY, Jørgensen RL, Arpanaei A, Meyer RL, Kingshott P, Vejborg RM, Klemm P, Gram L (2009) Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films. J Appl Microbiol 106(4):1268–1279

    CAS  PubMed  Google Scholar 

  • Berne C, Kysela DT, Brun YV (2010) A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm. Mol Microbiol 77(4):815–829

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bilek MM, McKenzie DR (2010) Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants. Biophys Rev 2(2):55–65

    CAS  Google Scholar 

  • Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34(34):8533–8554

    CAS  PubMed  Google Scholar 

  • Carmen JC, Roeder BL, Nelson JL, Robison Ogilvie RL, Robison RA, Schaalje GB, Pitt WG (2005) Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics. Am J Infect Control 33(2):78–82

    PubMed Central  PubMed  Google Scholar 

  • Castellsagué X, Díaz M, Vaccarella S, de Sanjosé S, Muñoz N, Herrero R, Franceschi S, Meijer CJ, Bosch FX (2011) Intrauterine device use, cervical infection with human papillomavirus, and risk of cervical cancer: a pooled analysis of 26 epidemiological studies. Lancet Oncol 12(11):1023–1031

    PubMed  Google Scholar 

  • Chapman RG, Ostuni E, Liang MN, Meluleni G, Kim E, Yan L, Pier G, Warren HS, Whitesides GM (2001) Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir 17(4):1225–1233

    CAS  Google Scholar 

  • Chen C, Cooper S (2000) Polycationic antimicrobial dendrimers: a comparison of alkyl pyridinium, quaternary ammonium, quaternary phosphonium and tertiary sulfonium salts. In: APS Meeting abstracts, p 13008

    Google Scholar 

  • Chen Q, Zhou M, Fu Y, Weng J, Zhang Y, Yue L, Xie F, Huo C (2008) Magnetron sputtering synthesis silver and organic PEO nanocomposite. Surf Coat Technol 202(22–23):5576–5578

    CAS  Google Scholar 

  • Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28(29):4192–4199

    CAS  PubMed  Google Scholar 

  • Cheng G, Xue H, Zhang Z, Chen S, Jiang S (2008) A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed 47(46):8831–8834

    CAS  Google Scholar 

  • Cheng G, Li G, Xue H, Chen S, Bryers JD, Jiang S (2009) Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 30(28):5234–5240

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chenoweth C, Saint S (2013) Preventing catheter-associated urinary tract infections in the intensive care unit. Crit Care Clin 29(1):19–32

    PubMed  Google Scholar 

  • Chua P-H, Neoh K-G, Kang E-T, Wang W (2008) Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials 29(10):1412–1421

    CAS  PubMed  Google Scholar 

  • Conover MS, Mishra M, Deora R (2011) Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. PLoS ONE 6(2):e16861

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cornell RJ, Donaruma LG (1965) 2-Methacryloxytropones. Intermediates for the synthesis of biologically active polymers. J Med Chem 8(3):388–390

    CAS  PubMed  Google Scholar 

  • Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7(4):1431–1440

    CAS  PubMed  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564-+

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crick CR, Ismail S, Pratten J, Parkin IP (2011) An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition. Thin Solid Films 519(11):3722–3727

    CAS  Google Scholar 

  • Cucarella C, Solano C, Valle J, Amorena B, Lasa Í, Penadés JR (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183(9):2888–2896

    PubMed Central  CAS  PubMed  Google Scholar 

  • Danese PN, Pratt LA, Dove SL, Kolter R (2000) The outer membrane protein, Antigen 43, mediates cell‐to‐cell interactions within Escherichia coli biofilms. Mol Microbiol 37(2):424–432

    CAS  PubMed  Google Scholar 

  • Daniel A, Le Pen C, Archambeau C, Reniers F (2009) Use of a PECVD–PVD process for the deposition of copper containing organosilicon thin films on steel. Appl Surf Sci 256(3, Supplement):S82–S85

    CAS  Google Scholar 

  • Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350(14):1422–1429

    CAS  PubMed  Google Scholar 

  • Deng L, Mrksich M, Whitesides GM (1996) Self-assembled monolayers of alkanethiolates presenting tri (propylene sulfoxide) groups resist the adsorption of protein. J Am Chem Soc 118(21):5136–5137

    CAS  Google Scholar 

  • Di Poto A, Sbarra MS, Provenza G, Visai L, Speziale P (2009) The effect of photodynamic treatment combined with antibiotic action or host defence mechanisms on Staphylococcus aureus biofilms. Biomaterials 30(18):3158–3166

    PubMed  Google Scholar 

  • Ding X, Yang C, Lim TP, Hsu LY, Engler AC, Hedrick JL, Yang Y-Y (2012) Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials 33(28):6593–6603

    CAS  PubMed  Google Scholar 

  • Dizman B, Elasri MO, Mathias LJ (2004) Synthesis, characterization, and antibacterial activities of novel methacrylate polymers containing norfloxacin. Biomacromolecules 6(1):514–520

    Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15(2):155–166

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dutta D, Cole N, Willcox M (2012) Factors influencing bacterial adhesion to contact lenses. Mol Vis 18:14

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandez-Gutierrez M, Olivares E, Pascual G, Bellon JM, Román JS (2013) Low-density polypropylene meshes coated with resorbable and biocompatible hydrophilic polymers as controlled release agents of antibiotics. Acta Biomater 9(4):6006–6018

    CAS  PubMed  Google Scholar 

  • Fey PD (2010) Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections? Curr Opin Microbiol 13(5):610–615

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frieden T (2013) Antibiotic resistance threats in the United States. Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  • Fuglsang CC, Johansen C, Christgau S, Adler-Nissen J (1995) Antimicrobial enzymes: applications and future potential in the food industry. Trends Food Sci Technol 6(12):390–396

    CAS  Google Scholar 

  • Fundeanu I, van der Mei HC, Schouten AJ, Busscher HJ (2008) Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber. Colloids Surf B: Biointerfaces 64(2):297–301

    CAS  PubMed  Google Scholar 

  • Garcia‐Fernandez MJ, Martinez‐Calvo L, Ruiz JC, Wertheimer MR, Concheiro A, Alvarez‐Lorenzo C (2012) Loading and release of drugs from oxygen‐rich plasma polymer coatings. Plasma Process Polym 9(5):540–549

    Google Scholar 

  • Gloag ES, Turnbull L, Huang A, Vallotton P, Wang H, Nolan LM, Mililli L, Hunt C, Lu J, Osvath SR (2013) Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci 110(28):11541–11546

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gon S, Kumar K-N, Nüsslein K, Santore MM (2012) How bacteria adhere to brushy peg surfaces: clinging to flaws and compressing the brush. Macromolecules 45(20):8373–8381

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goy RC, Dd B, Assis OB (2009) A review of the antimicrobial activity of chitosan. Polímeros 19(3):241–247

    CAS  Google Scholar 

  • Griffith BP, Kormos RL, Hardesty RL, Armitage JM, Dummer JS (1988) The artificial heart: infection-related morbidity and its effect on transplantation. Ann Thorac Surg 45(4):409–414

    CAS  PubMed  Google Scholar 

  • Grigoras AG, Racovita S, Vasiliu S, Nistor MT, Dunca S, Barboiu V, Grigoras VC (2012) Dilute solution properties of some polycarboxybetaines with antibacterial activity. J Polym Res 19(11):8

    Google Scholar 

  • Gudipati CS, Finlay JA, Callow JA, Callow ME, Wooley KL (2005) The antifouling and fouling-release performance of hyperbranched fluoropolymer (HBFP)-poly (ethylene glycol)(PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga ulva. Langmuir 21(7):3044–3053

    CAS  PubMed  Google Scholar 

  • Guo L, Yuan W, Lu Z, Li CM (2013) Polymer/nanosilver composite coatings for antibacterial applications. Colloids Surf A Physicochem Eng Asp 439:69–83

    CAS  Google Scholar 

  • Hancock REW, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8(9):402–410

    CAS  PubMed  Google Scholar 

  • Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotech 24(12):1551–1557

    CAS  Google Scholar 

  • Harmsen M, Lappann M, Knøchel S, Molin S (2010) Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 76(7):2271–2279

    PubMed Central  CAS  PubMed  Google Scholar 

  • Harris LG, Tosatti S, Wieland M, Textor M, Richards RG (2004) Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 25(18):4135–4148

    CAS  PubMed  Google Scholar 

  • Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31(5):295–304

    CAS  PubMed  Google Scholar 

  • Hazan Z, Zumeris J, Jacob H, Raskin H, Kratysh G, Vishnia M, Dror N, Barliya T, Mandel M, Lavie G (2006) Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrob Agents Chemother 50(12):4144–4152

    PubMed Central  CAS  PubMed  Google Scholar 

  • He D, Noh SK, Lyoo WS (2011) In situ‐generated Ru (III)‐mediated ATRP from the polymeric Ru (III) complex in the absence of activator generation agents. J Polym Sci A Polym Chem 49(21):4594–4602

    CAS  Google Scholar 

  • Heilmann C, Hussain M, Peters G, Götz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24(5):1013–1024

    CAS  PubMed  Google Scholar 

  • Heimberger T, Duma R (1989) Infections of prosthetic heart valves and cardiac pacemakers. Infect Dis Clin N Am 3(2):221–245

    CAS  Google Scholar 

  • Hendricks SK, Kwok C, Shen M, Horbett TA, Ratner BD, Bryers JD (2000) Plasma‐deposited membranes for controlled release of antibiotic to prevent bacterial adhesion and biofilm formation. J Biomed Mater Res 50(2):160–170

    CAS  PubMed  Google Scholar 

  • Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35(9):780–789

    CAS  PubMed  Google Scholar 

  • Hou S, Burton EA, Simon KA, Blodgett D, Luk Y-Y, Ren D (2007) Inhibition of Escherichia coli biofilm formation by self-assembled monolayers of functional alkanethiols on gold. Appl Environ Microbiol 73(13):4300–4307

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iarikov DD, Kargar M, Sahari A, Russel L, Gause KT, Behkam B, Ducker WA (2013) Antimicrobial surfaces using covalently bound polyallylamine. Biomacromolecules 15(1):169–176

    PubMed  Google Scholar 

  • Isefuku S, Joyner CJ, Simpson AHR (2003) Gentamicin may have an adverse effect on osteogenesis. J Orthop Trauma 17(3):212–216

    PubMed  Google Scholar 

  • Izadpanah A, Gallo RL (2005) Antimicrobial peptides. J Am Acad Dermatol 52(3):381–390

    PubMed  Google Scholar 

  • Izano EA, Amarante MA, Kher WB, Kaplan JB (2008) Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74(2):470–476

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacobs T, Morent R, De Geyter N, Dubruel P, Leys C (2012) Plasma surface modification of biomedical polymers: influence on cell-material interaction. Plasma Chem Plasma Process 32(5):1039–1073

    CAS  Google Scholar 

  • Jahani S, Shakiba A, Azami M (2014) Functional properties, antibacterial and antioxidant activities of Zataria multiflora encapsulated in geltin nanofilms. J Microbiol Biotechnol Food Sci 4(2):88–92

    Google Scholar 

  • Jiang B, Barnett JB, Li B (2009) Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems. Nanotechnol Sci Appl 2:21

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    CAS  PubMed  Google Scholar 

  • Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10(10):813–829

    CAS  PubMed  Google Scholar 

  • Kanazawa A, Ikeda T, Endo T (1993a) Polymeric phosphonium salts as a novel class of cationic biocides. IV. Synthesis and antibacterial activity of polymers with phosphonium salts in the main chain. J Polym Sci A Polym Chem 31(12):3031–3038

    CAS  Google Scholar 

  • Kanazawa A, Ikeda T, Endo T (1993b) Novel polycationic biocides: synthesis and antibacterial activity of polymeric phosphonium salts. J Polym Sci A Polym Chem 31(2):335–343

    CAS  Google Scholar 

  • Kawabata N, Nishiguchi M (1988) Antibacterial activity of soluble pyridinium-type polymers. Appl Environ Microbiol 54(10):2532–2535

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kenawy E-R, Worley S, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8(5):1359–1384

    CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong DH, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101

    CAS  Google Scholar 

  • Kingshott P, Griesser HJ (1999) Surfaces that resist bioadhesion. Curr Opinion Solid State Mater Sci 4(4):403–412

    CAS  Google Scholar 

  • Kingshott P, Thissen H, Griesser HJ (2002) Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials 23(9):2043–2056

    CAS  PubMed  Google Scholar 

  • Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L (2003) Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 19(17):6912–6921

    CAS  Google Scholar 

  • Klausen M, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50(1):61–68

    CAS  PubMed  Google Scholar 

  • Klevens RM, Edwards JR, Richards CL, Horan TC, Gaynes RP, Pollock DA, Cardo DM (2007) Estimating health care-associated infections and deaths in US hospitals, 2002. Public Health Rep 122(2):160

    PubMed Central  PubMed  Google Scholar 

  • Kwok CS, Horbett TA, Ratner BD (1999) Design of infection-resistant antibiotic-releasing polymers: II. Controlled release of antibiotics through a plasma-deposited thin film barrier. J Control Release 62(3):301–311

    CAS  PubMed  Google Scholar 

  • Kwon D-H, Lu C-D (2007) Polyamine effects on antibiotic susceptibility in bacteria. Antimicrob Agents Chemother 51(6):2070–2077

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5(3):877–882

    CAS  PubMed  Google Scholar 

  • Leroy C, Delbarre C, Ghillebaert F, Compere C, Combes D (2008) Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 24(1):11–22

    CAS  PubMed  Google Scholar 

  • Li G, Cheng G, Xue H, Chen S, Zhang F, Jiang S (2008a) Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials 29(35):4592–4597

    CAS  PubMed  Google Scholar 

  • Li G, Xue H, Cheng G, Chen S, Zhang F, Jiang S (2008b) Ultralow fouling zwitterionic polymers grafted from surfaces covered with an initiator via an adhesive mussel mimetic linkage. J Phys Chem B 112(48):15269–15274

    CAS  PubMed  Google Scholar 

  • Li P, Poon YF, Li W, Zhu H-Y, Yeap SH, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman RW, Kang E-T, Mu Y, Li CM, Chang MW, Jan Leong SS, Chan-Park MB (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10(2):149–156

    CAS  PubMed  Google Scholar 

  • Lin J, Tiller JC, Lee SB, Lewis K, Klibanov AM (2002) Insights into bactericidal action of surface-attached poly (vinyl-N-hexylpyridinium) chains. Biotechnol Lett 24(10):801–805

    CAS  Google Scholar 

  • Lin J, Qiu S, Lewis K, Klibanov AM (2003) Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol Bioeng 83(2):168–172

    CAS  PubMed  Google Scholar 

  • Loo C-Y, Young PM, Lee W-H, Cavaliere R, Whitchurch CB, Rohanizadeh R (2012) Superhydrophobic, nanotextured polyvinyl chloride films for delaying Pseudomonas aeruginosa attachment to intubation tubes and medical plastics. Acta Biomater 8(5):1881–1890

    CAS  PubMed  Google Scholar 

  • Lyte M, Freestone PP, Neal CP, Olson BA, Haigh RD, Bayston R, Williams PH (2003) Stimulation of Staphylococcus epidermidis growth and biofilm formation by catecholamine inotropes. Lancet 361(9352):130–135

    CAS  PubMed  Google Scholar 

  • Ma Y, Chen M, Jones JE, Ritts AC, Yu Q, Sun H (2012) Inhibition of Staphylococcus epidermidis biofilm by trimethylsilane plasma coating. Antimicrob Agents Chemother 56(11):5923–5937

    PubMed Central  CAS  PubMed  Google Scholar 

  • Majik MS, Parvatkar TP (2014) Next generation biofilm inhibitors for Pseudomonas aeruginosa: synthesis and rational design approaches. Curr Top Med Chem 14(1):81–109

    CAS  PubMed  Google Scholar 

  • Manne MB, Shrestha NK, Lytle BW, Nowicki ER, Blackstone E, Gordon SM, Pettersson G, Fraser TG (2012) Outcomes after surgical treatment of native and prosthetic valve infective endocarditis. Ann Thorac Surg 93(2):489–493

    PubMed  Google Scholar 

  • Moore WS, Chvapil M, Seiffert G, Keown K (1981) Development of an infection-resistant vascular prosthesis. Arch Surg 116(11):1403–1407

    CAS  PubMed  Google Scholar 

  • Morra M, Cassineli C (1999) Non-fouling properties of polysaccharide-coated surfaces. J Biomater Sci Polym Ed 10(10):1107–1124

    CAS  PubMed  Google Scholar 

  • Moskowitz JS, Blaisse MR, Samuel RE, Hsu H-P, Harris MB, Martin SD, Lee JC, Spector M, Hammond PT (2010) The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model. Biomaterials 31(23):6019–6030

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muñoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37(2):281–339

    Google Scholar 

  • Nablo BJ, Rothrock AR, Schoenfisch MH (2005) Nitric oxide-releasing sol–gels as antibacterial coatings for orthopedic implants. Biomaterials 26(8):917–924

    CAS  PubMed  Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29(9):464–472

    CAS  PubMed  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30(2):295–304

    PubMed  Google Scholar 

  • Oren Z, Shai Y (1998) Mode of action of linear amphipathic α-helical antimicrobial peptides. Pept Sci 47(6):451–463

    CAS  Google Scholar 

  • Ortlepp S, Pedpradap S, Dobretsov S, Proksch P (2008) Antifouling activity of sponge-derived polybrominated diphenyl ethers and synthetic analogues. Biofouling 24(3):201–208

    CAS  PubMed  Google Scholar 

  • Otsuka H, Nagasaki Y, Kataoka K (2001) Self-assembly of poly (ethylene glycol)-based block copolymers for biomedical applications. Curr Opin Colloid Interface Sci 6(1):3–10

    CAS  Google Scholar 

  • Percival SL, Walker JT, Hunter PR (2000) Microbiological aspects of biofilms and drinking water. CRC Press, New York

    Google Scholar 

  • Percival S, Malic S, Cruz H, Williams D (2011) Introduction to biofilms. In: Percival S, Knottenbelt D, Cochrane C (eds) Biofilms and veterinary medicine, vol 6. Springer, Berlin/Heidelberg, pp 41–68

    Google Scholar 

  • Petersen FC, Tao L, Scheie AA (2005) DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation. J Bacteriol 187(13):4392–4400

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pillai VR, Mutter M (1981) Synthetic hydrophilic polymers. Naturwissenschaften 68(11):558–566

    CAS  Google Scholar 

  • Poelstra KA, Barekzi NA, Rediske AM, Felts AG, Slunt JB, Grainger DW (2002) Prophylactic treatment of gram‐positive and gram‐negative abdominal implant infections using locally delivered polyclonal antibodies. J Biomed Mater Res 60(1):206–215

    CAS  PubMed  Google Scholar 

  • Poortinga AT, Bos R, Norde W, Busscher HJ (2002) Electric double layer interactions in bacterial adhesion to surfaces. Surf Sci Rep 47(1):1–32

    CAS  Google Scholar 

  • Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28(32):4880–4888

    CAS  PubMed  Google Scholar 

  • Post JC, Stoodley P, Hall–Stoodley L, Ehrlich GD (2004) The role of biofilms in otolaryngologic infections. Curr Opin Otolaryngol Head Neck Surg 12(3):185–190

    PubMed  Google Scholar 

  • Rhim J-W, Hong S-I, Park H-M, Ng PKW (2006) Preparation and characterization of Chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54(16):5814–5822

    CAS  PubMed  Google Scholar 

  • Richards MJ, Edwards JR, Culver DH, Gaynes RP (2000) Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol 21(8):510–515

    CAS  PubMed  Google Scholar 

  • Rodrigues, L. R. (2011). Inhibition of bacterial adhesion on medical devices. In: Linke D, Goldman A (eds) Bacterial adhesion, vol. 715. Springer, p 351)

    Google Scholar 

  • Rosenthal VD (2011) Health-care-associated infections in developing countries. Lancet 377:186–188

    PubMed  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716

    CAS  PubMed  Google Scholar 

  • Senaratne W, Andruzzi L, Ober CK (2005) Self-assembled monolayers and polymer brushes in biotechnology: current applications and future perspectives. Biomacromolecules 6(5):2427–2448

    CAS  PubMed  Google Scholar 

  • Shao C-L, Wu H-X, Wang C-Y, Liu Q-A, Xu Y, Wei M-Y, Qian P-Y, Gu Y-C, Zheng C-J, She Z-G, Lin Y-C (2011) Potent antifouling resorcylic acid lactones from the Gorgonian-derived fungus Cochliobolus lunatus. J Nat Prod 74(4):629–633

    CAS  PubMed  Google Scholar 

  • Shateri Khalil-Abad M, Yazdanshenas ME (2010) Superhydrophobic antibacterial cotton textiles. J Colloid Interface Sci 351(1):293–298

    CAS  PubMed  Google Scholar 

  • Shukla A, Fleming KE, Chuang HF, Chau TM, Loose CR, Stephanopoulos GN, Hammond PT (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31(8):2348–2357

    CAS  PubMed  Google Scholar 

  • Shukla A, Fuller RC, Hammond PT (2011) Design of multi-drug release coatings targeting infection and inflammation. J Control Release 155(2):159–166

    CAS  PubMed  Google Scholar 

  • Siedenbiedel F, Tiller JC (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4(1):46–71

    CAS  Google Scholar 

  • Sin M-C, Sun Y-M, Chang Y (2014) Zwitterionic-based stainless steel with well-defined polysulfobetaine brushes for general bioadhesive control. ACS Appl Mater Interfaces 6(2):861–873

    CAS  PubMed  Google Scholar 

  • Smith AW (2005) Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev 57(10):1539–1550

    CAS  PubMed  Google Scholar 

  • Spoering AL, Gilmore MS (2006) Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol 9(2):133–137

    CAS  PubMed  Google Scholar 

  • Stewart PS, William Costerton J (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138

    CAS  PubMed  Google Scholar 

  • Stoodley P, Sauer K, Davies D, Costerton JW (2002) Biofilms as complex differentiated communities. Ann Rev Microbiol 56(1):187–209

    CAS  Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147(1):3–9

    CAS  PubMed  Google Scholar 

  • Szleifer I (1997) Protein adsorption on tethered polymer layers: effect of polymer chain architecture and composition. Physica A: Stat Mech Appl 244(1):370–388

    CAS  Google Scholar 

  • Tange R, Dreschler W, Prins J, Buller H, Kuijper E, Speelman P (1995) Ototoxicity and nephrotoxicity of gentamicin vs netilmicin in patients with serious infections. A randomized clinical trial. Clin Otolaryngol Allied Sci 20(2):118–123

    CAS  PubMed  Google Scholar 

  • Tetz VV, Tetz GV (2010) Effect of extracellular DNA destruction by DNase I on characteristics of forming biofilms. DNA Cell Biol 29(8):399–405

    CAS  PubMed  Google Scholar 

  • Thallinger B, Prasetyo EN, Nyanhongo GS, Guebitz GM (2013) Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnol J 8(1):97–109

    CAS  PubMed  Google Scholar 

  • Tiller JC, Liao C-J, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci 98(11):5981–5985

    PubMed Central  CAS  PubMed  Google Scholar 

  • Timofeeva L, Kleshcheva N (2011) Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol 89(3):475–492

    CAS  PubMed  Google Scholar 

  • Toté K, Berghe DV, Deschacht M, de Wit K, Maes L, Cos P (2009) Inhibitory efficacy of various antibiotics on matrix and viable mass of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Int J Antimicrob Agents 33(6):525–531

    PubMed  Google Scholar 

  • Trentin DS, Bonatto F, Zimmer KR, Ribeiro VB, Antunes ALS, Barth AL, Soares GV, Krug C, Baumvol IJR, Macedo AJ (2014) N2/H2 plasma surface modifications of polystyrene inhibit the adhesion of multidrug resistant bacteria. Surf Coat Technol 245:84–91

    CAS  Google Scholar 

  • Triandafillu K, Balazs D, Aronsson B-O, Descouts P, Tu Quoc P, van Delden C, Mathieu H, Harms H (2003) Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly (vinyl chloride)(PVC) from endotracheal intubation devices. Biomaterials 24(8):1507–1518

    CAS  PubMed  Google Scholar 

  • Vacheethasanee K, Marchant RE (2000) Surfactant polymers designed to suppress bacterial (Staphylococcus epidermidis) adhesion on biomaterials. J Biomed Mater Res 50(3):302–312

    CAS  PubMed  Google Scholar 

  • Vallet I, Diggle SP, Stacey RE, Cámara M, Ventre I, Lory S, Lazdunski A, Williams P, Filloux A (2004) Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. J Bacteriol 186(9):2880–2890

    PubMed Central  CAS  PubMed  Google Scholar 

  • van Schaik EJ, Giltner CL, Audette GF, Keizer DW, Bautista DL, Slupsky CM, Sykes BD, Irvin RT (2005) DNA binding: a novel function of Pseudomonas aeruginosa type IV pili. J Bacteriol 187(4):1455–1464

    PubMed Central  PubMed  Google Scholar 

  • Vasilev K, Sah V, Anselme K, Ndi C, Mateescu M, Dollmann B, Martinek P, Ys H, Ploux L, Griesser HJ (2009) Tunable antibacterial coatings that support mammalian cell growth. Nano Lett 10(1):202–207

    Google Scholar 

  • Vasilev K, Griesser SS, Griesser HJ (2011) Antibacterial surfaces and coatings produced by plasma techniques. Plasma Process Polym 8(11):1010–1023

    CAS  Google Scholar 

  • Vilain S, Pretorius JM, Theron J, Brözel VS (2009) DNA as an adhesin: bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75(9):2861–2868

    PubMed Central  CAS  PubMed  Google Scholar 

  • Waar K, van der Mei HC, Harmsen HJ, Degener JE, Busscher HJ (2002) Enterococcus faecalis surface proteins determine its adhesion mechanism to bile drain materials. Microbiology 148(6):1863–1870

    CAS  PubMed  Google Scholar 

  • Wagner VE, Koberstein JT, Bryers JD (2004) Protein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly (acrylic acid) co-polymers. Biomaterials 25(12):2247–2263

    CAS  PubMed  Google Scholar 

  • Waschinski CJ, Herdes V, Schueler F, Tiller JC (2005) Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol Biosci 5(2):149–156

    CAS  PubMed  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295(5559):1487–1487

    CAS  PubMed  Google Scholar 

  • Wiencek KM, Fletcher M (1995) Bacterial adhesion to hydroxyl-and methyl-terminated alkanethiol self-assembled monolayers. J Bacteriol 177(8):1959–1966

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto K, Arai H, Ishii M, Igarashi Y (2012) Involvement of flagella-driven motility and pili in Pseudomonas aeruginosa colonization at the air-liquid interface. Microbes Environ 27(3):320–323

    PubMed Central  PubMed  Google Scholar 

  • Yoon SH, Rungraeng N, Song W, Jun S (2014) Superhydrophobic and superhydrophilic nanocomposite coatings for preventing Escherichia coli K-12 adhesion on food contact surface. J Food Eng 131:135–141

    CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    CAS  PubMed  Google Scholar 

  • Zegans ME, Becker HI, Budzik J, O’Toole G (2002) The role of bacterial biofilms in ocular infections. DNA Cell Biol 21(5–6):415–420

    CAS  PubMed  Google Scholar 

  • Zhao L, Mitomo H, Zhai M, Yoshii F, Nagasawa N, Kume T (2003) Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydr Polym 53(4):439–446

    CAS  Google Scholar 

Download references

Acknowledgments

The Scientific Industrial Endowment Fund (SIEF) is acknowledged for providing a John Stocker Postdoctoral Research Fellowship for PYW. The Australian Research Council is acknowledged for funding a PhD scholarship for HP through an ARC Discovery Grant. This work was supported in part at both the Biointerface Engineering Hub at Swinburne and the Melbourne Centre for Nanofabrication as part of the Victorian Node of the Australian National Fabrication Facility, a company established under the National Collaborative Research Infrastructure Strategy to provide nano and microfabrication facilities for Australia’s researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kingshott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pingle, H., Wang, PY., McArthur, S., Kingshott, P. (2015). Manufacture of Chemically Modified Antibacterial Surfaces. In: Ivanova, E., Crawford, R. (eds) Antibacterial Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-18594-1_5

Download citation

Publish with us

Policies and ethics