Skip to main content

Natural Antibacterial Surfaces

  • Chapter
Antibacterial Surfaces

Abstract

The world has long experienced the impact of surfaces fouling with biofilms, not only in economic terms, but also, importantly, the adverse effect that biofilms can have with regard to public health. In the USA alone, billions of dollars are spent every year cleaning equipment, decontaminating products and cleaning ship hulls, while over 100,000 mortalities are reported annually as a result of infections resulting from medical device implant surgeries that have been compromised by the presence of pathogenic bacteria. Of great concern is that the heavy use of chemicals for neutralising bacterial colonies has resulted in the production of tougher, more resistant strains of pathogenic bacteria, which challenges the scientific community to find new approaches for controlling the formation of biofilms. Recently, the hierarchical structures found on the surfaces of some organisms, such as plant leaves and insect cuticles, have been shown to be superhydrophobic, self-cleaning, and possess bactericidal activity. Since the self-cleaning properties of the lotus leaf were reported in 1997, there has been a great deal of effort put into exploring this approach as a potential method for controlling the formation of biofilms. These discoveries may provide alternative approaches for controlling bacterial behaviour, either before or after the bacteria have attached to a substrate surface. This chapter provides a summary of some of the strategies employed by nature for controlling the colonisation of bacteria on surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angst EC (1923) The fouling of ships bottoms by bacteria. Rep., Bur. Constr. Repair. US Navy Department, Washington, DC

    Google Scholar 

  • Arsene C, Schulz S, Van Loon JJA (2002) Chemical polymorphism of the cuticular lipids of the cabbage white Pieris rapae. J Chem Ecol 28(12):2627–2631

    Article  CAS  PubMed  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8

    Article  CAS  Google Scholar 

  • Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126(3):237–260

    Article  Google Scholar 

  • Baum C, Meyer W, Stelzer R, Fleischer LG, Siebers D (2002) Average nanorough skin surface of the pilot whale (Globicephala melas, Delphinidae): considerations on the self-cleaning abilities based on nanoroughness. Mar Biol 140(3):653–657

    Article  Google Scholar 

  • Bechert DW, Bruse M, Hage W, Van Der Hoeven JGT, Hoppe G (1997) Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J Fluid Mech 338:59–87

    Article  Google Scholar 

  • Behlau I, Gilmore MS (2008) Microbial biofilms in ophthalmology and infectious disease. Arch Ophthalmol 126(11):1572–1581

    Article  CAS  PubMed  Google Scholar 

  • Bhushan B (2012) Bioinspired structured surfaces. Langmuir 28(3):1698–1714

    Article  CAS  PubMed  Google Scholar 

  • Bhushan B, Jung YC, Koch K (2009) Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir 25(5):3240–3248

    Article  CAS  PubMed  Google Scholar 

  • Bixler GD, Bhushan B (2013) Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale 5(17):7685–7710

    Article  CAS  PubMed  Google Scholar 

  • Boeve JL, Voigt D, Gorb SN (2011) Crystalline wax coverage of the cuticle in easy bleeding sawfly larvae. Arthropod Struct Dev 40(2):186–189

    Article  PubMed  Google Scholar 

  • Bos R, Van Der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol Rev 23(2):179–229

    Article  CAS  PubMed  Google Scholar 

  • Buckner JS (2010) Oxygenated derivatives of hydrocarbons. In: Blomquist GJ, Bagnères A-G (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 187–203

    Chapter  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Buschhaus C, Jetter R (2011) Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces? J Exp Bot 62(3):841–853

    Article  CAS  PubMed  Google Scholar 

  • Buschhaus C, Herz H, Jetter R (2007) Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves. Ann Bot 100(7):1557–1564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bushnell DM, Moore KJ (1991) Drag reduction in nature. Annu Rev Fluid Mech 23(1):65–79

    Article  Google Scholar 

  • Byun D, Hong J, Saputra KJH, Lee YJ, Park HC, Byun BK, Lukes JR (2009) Wetting characteristics of insect wing surfaces. J Bionic Eng 6(1):63–70

    Article  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  • Dalton HM, March PE (1998) Molecular genetics of bacterial attachment and biofouling. Curr Opin Biotechnol 9(3):252–255

    Article  CAS  PubMed  Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28(3):261–289

    Article  CAS  PubMed  Google Scholar 

  • Dean B, Bhushan B (2010) Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos Trans A Math Phys Eng Sci 368(1929):4775–4806

    Article  PubMed  Google Scholar 

  • Di Iaconi C, Ramadori R, Lopez A, Passino R (2005) Hydraulic shear stress calculation in a sequencing batch biofilm reactor with granular biomass. Environ Sci Technol 39(3):889–894

    Article  PubMed  Google Scholar 

  • Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W (2011) Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotechnol 2(1):152–161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fish FE (2006) The myth and reality of Gray’s paradox: implication of dolphin drag reduction for technology. Bioinspir Biomim 1(2):R17–R25

    Article  PubMed  Google Scholar 

  • Fish FE, Hui CA (1991) Dolphin swimming – a review. Mammal Rev 21(4):181–195

    Article  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490

    Article  CAS  PubMed  Google Scholar 

  • Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109(18):8889–8898

    Article  CAS  PubMed  Google Scholar 

  • Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056

    Article  CAS  Google Scholar 

  • Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36(8):1263–1269

    Article  CAS  PubMed  Google Scholar 

  • Geesey GG, Richardson WT, Yeomans HG, Irvin RT, Costerton JW (1977) Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol 23(12):1733–1736

    Article  CAS  PubMed  Google Scholar 

  • Gelover S, Gómez LA, Reyes K, Leal MT (2006) A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res 40(17):3274–3280

    Article  CAS  PubMed  Google Scholar 

  • Gorb SN (1999) Serial elastic elements in the damselfly wing: mobile vein joints contain resilin. Naturwissenschaften 86(11):552–555

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi D, Engel MS (2005) Insects take to the skies. In: Evolution of the insects. Cambridge University Press, New York, pp 155–178

    Google Scholar 

  • Guo Z, Liu W (2007) Biomimic from the superhydrophobic plant leaves in nature: binary structure and unitary structure. Plant Sci 172(6):1103–1112

    Article  CAS  Google Scholar 

  • Hasan J, Webb HK, Truong VK, Pogodin S, Baulin VA, Watson GS, Watson JA, Crawford RJ, Ivanova EP (2012) Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Appl Microbiol Biotechnol 97(20):1–6

    Google Scholar 

  • Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200(1–2):103–134

    Article  CAS  Google Scholar 

  • Henrici AT (1933) Studies of freshwater bacteria. I. A direct microscopic technique. J Bacteriol 25(3):277–287

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holmes A, Doré CJ, Saraswatula A, Bamford KB, Richards MS, Coello R, Modi N (2008) Risk factors and recommendations for rate stratification for surveillance of neonatal healthcare-associated bloodstream infection. J Hosp Infect 68(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Hsiao MT, Chen SF, Shieh DB, Yeh CS (2006) One-pot synthesis of hollow Au3Cu1 spherical-like and biomineral botallackite Cu2(OH)3Cl flowerlike architectures exhibiting antimicrobial activity. J Phys Chem B 110(1):205–210

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez JA, Litter MI, Pizarro RA (2003) Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae. Comparative study with other Gram (-) bacteria. J Photochem Photobiol A Chem 157(1):81–85

    Article  Google Scholar 

  • In S, Orlov A, Berg R, García F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J Am Chem Soc 129(45):13790–13791

    Article  CAS  PubMed  Google Scholar 

  • Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, Baulin VA, Pogodin S, Wang JY, Tobin MJ, Löbbe C, Crawford RJ (2012) Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small 8(16):2489–2494

    Article  CAS  PubMed  Google Scholar 

  • Ivanova EP, Hasan J, Webb KW, Gervinskas G, Juodkazis S, Truong VK, Wu AHF, Lamb RN, Baulin VA, Watson GS, Watson JA, Mainwaring DE, Crawford RJ (2013a) Bactericidal activity of black silicon. Nat Commun 4:2838–2844

    Article  PubMed Central  PubMed  Google Scholar 

  • Ivanova EP, Nguyen SH, Webb HK, Hasan J, Truong VK, Lamb RN, Duan X, Tobin MJ, Mahon PJ, Crawford RJ (2013b) Molecular organization of the nanoscale surface structures of the dragonfly Hemianax papuensis wing epicuticle. PLoS ONE 8(7):e67893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeffree CE (2006) In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell Publishing, Oxford, pp 11–125

    Chapter  Google Scholar 

  • Jetter R, Kunst L (2008) Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J 54(4):670–683

    Article  CAS  PubMed  Google Scholar 

  • Jetter R, Schäffer S, Riederer M (2000) Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L. Plant Cell Environ 23(6):619–628

    Article  CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    Article  CAS  PubMed  Google Scholar 

  • Jung YC, Bhushan B (2006) Contact angle, adhesion and friction properties of micro- and nanopatterned polymers for superhydrophobicity. Nanotechnology 17(19):4970–4980

    Article  CAS  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389(6646):33–39

    Article  CAS  Google Scholar 

  • Kjelleberg S, Molin S (2002) Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol 5(3):254–258

    Article  CAS  PubMed  Google Scholar 

  • Klevens RM, Edwards JR, Richards CL Jr, Horan TC, Gaynes RP, Pollock DA, Cardo DM (2007) Estimating health care-associated infections and deaths in U.S. Hospitals, 2002. Public Health Rep 122(2):160–166

    PubMed Central  PubMed  Google Scholar 

  • Koch K, Ensikat HJ (2008) The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 39(7):759–772

    Article  CAS  PubMed  Google Scholar 

  • Koch K, Dommisse A, Barthlott W (2006) Chemistry and crystal growth of plant wax tubules of lotus (Nelumbo nucifera) and nasturtium (Tropaeolum majus) leaves on technical substrates. Cryst Growth Des 6(11):2571–2578

    Article  CAS  Google Scholar 

  • Koch K, Bhushan B, Ensikat HJ, Barthlott W (2009) Self-healing of voids in the wax coating on plant surfaces. Philos Trans A Math Phys Eng Sci 367(1894):1673–1688

    Article  PubMed  Google Scholar 

  • Kreuz P, Arnold W, Kesel AB (2001) Acoustic microscopic analysis of the biological structure of insect wing membranes with emphasis on their waxy surface. Ann Biomed Eng 29(12):1054–1058

    Article  CAS  PubMed  Google Scholar 

  • Lichter JA, Van Vlietpa KJ, Rubner MF (2009) Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42(22):8573–8586

    Article  CAS  Google Scholar 

  • Liu Y, Tay JH (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 36(7):1653–1665

    Article  CAS  PubMed  Google Scholar 

  • Lockey KH (1980) Insect cuticular hydrocarbons. Comp Biochem Physiol B: Biochem Mol Biol 65(3):457–462

    Google Scholar 

  • Lockey KH (1985) Insect cuticular lipids. Comp Biochem Physiol B: Biochem Mol Biol 81(2):263–273

    Article  Google Scholar 

  • Lockey KH (1988) Lipids of the insect cuticle: origin, composition and function. Comp Biochem Physiol B: Biochem Mol Biol 89(4):595–645

    Article  Google Scholar 

  • Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moussian B (2010) Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem Mol Biol 40(5):363–375

    Article  CAS  PubMed  Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79(6):667–677

    Article  Google Scholar 

  • Nelson DR, Blomquist LG (1995) Insect waxes. In: Hamilton RJ, Christie WW (eds) Waxes: chemistry, molecular biology and functions. The Oily Press Ltd Hamilton RJ, Dundee, pp 1–90

    Google Scholar 

  • Nelson DR, Charlet LD (2003) Cuticular hydrocarbons of the sunflower beetle, Zygogramma exclamationis. Comp Biochem Physiol B: Biochem Mol Biol 135(2):273–284

    Article  Google Scholar 

  • Nguyen SH, Webb HK, Hasan J, Tobin MJ, Crawford RJ, Ivanova EP (2013) Dual role of outer epicuticular lipids in determining the wettability of dragonfly wings. Colloids Surf B: Biointerfaces 106:126–134

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto S, Bhushan B (2013) Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv 3(3):671–690

    Article  CAS  Google Scholar 

  • Nosonovsky M, Bhushan B (2005) Roughness optimization for biomimetic superhydrophobic surfaces. Microsyst Technol 11(7):535–549

    Article  CAS  Google Scholar 

  • Nosonovsky M, Bhushan B (2007) Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater Sci Eng R Rep 58(3–5):162–193

    Article  Google Scholar 

  • Nosonovsky M, Bhushan B (2008) Multiscale dissipative mechanisms and hierarchical surfaces: friction, superhydrophobicity and biomimetics. Springer, Berlin

    Book  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  • Pogodin S, Hasan J, Baulin VA, Webb HK, Truong VK, Nguyen THP, Boshkovikj V, Fluke CJ, Watson GS, Watson JA, Crawford RJ, Ivanova EP (2013) Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J 104(4):835–840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Ramsay JA (1935) The evaporation of water from the cockroach. J Exp Biol 12:373–383

    Google Scholar 

  • Ridgway SH, Carder DA (1993) Features of dolphin skin with potential hydrodynamic importance. IEEE Eng Med Biol Manag 12(3):83–88

    Article  Google Scholar 

  • Ryu JH, Beuchat LR (2005) Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer. J Food Protect 68(12):2614–2622

    CAS  Google Scholar 

  • Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Winter J, Gallert C (2012) Long-term effects of antibiotics on the elimination of chemical oxygen demand, nitrification, and viable bacteria in laboratory-scale wastewater treatment plants. Arch Environ Contam Toxicol 63(3):354–364

    Article  CAS  PubMed  Google Scholar 

  • Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27(1):87–98

    Article  CAS  PubMed  Google Scholar 

  • Seo YS, Lee DY, Rayamahji N, Kang ML, Yoo HS (2008) Biofilm-forming associated genotypic and phenotypic characteristics of Staphylococcus spp. isolated from animals and air. Res Vet Sci 85(3):433–438

    Article  CAS  PubMed  Google Scholar 

  • Simões M, Simões LC, Vieira MJ (2009) Species association increases biofilm resistance to chemical and mechanical treatments. Water Res 43(1):229–237

    Article  PubMed  Google Scholar 

  • Su Y, Ji B, Zhang K, Gao H, Huang Y, Hwang K (2010) Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces. Langmuir 26(7):4984–4989

    Article  CAS  PubMed  Google Scholar 

  • Van Maarseveen C, Han H, Jetter R (2009) Development of the cuticular wax during growth of Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves. Plant Cell Environ 32(1):73–81

    Article  PubMed  Google Scholar 

  • Wan Y, Cong Q, Wang X, Yan Z (2008) The wettability and mechanism of geometric non-smooth structure of dragonfly wing surface. J Bionic Eng 5(SUPPL):40–45

    Article  Google Scholar 

  • Watson GS, Myhra S, Cribb BW, Watson JA (2008) Putative functions and functional efficiency of ordered cuticular nanoarrays on insect wings. Biophys J 94(8):3352–3360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Webb HK, Hasan J, Truong VK, Crawford RJ, Ivanova EP (2011) Nature inspired structured surfaces for biomedical applications. Curr Med Chem 18(22):3367–3375

    Article  CAS  PubMed  Google Scholar 

  • Wenzel RN (1949) Surface roughness and contact angle. J Phys Colloid Chem 53(9):1466–1467

    Article  CAS  Google Scholar 

  • Wootton RJ (1992) Functional morphology of insect wings. Annu Rev Entomol 37(1):113–140

    Article  Google Scholar 

  • Wu MY, Sendamangalam V, Xue Z, Seo Y (2012) The influence of biofilm structure and total interaction energy on Escherichia coli retention by Pseudomonas aeruginosa biofilm. Biofouling 28(10):1119–1128

    Article  PubMed  Google Scholar 

  • Yan YY, Gao N, Barthlott W (2011) Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci 169(2):80–105

    Article  CAS  PubMed  Google Scholar 

  • Yasuyuki M, Kunihiro K, Kurissery S, Kanavillil N, Sato Y, Kikuchi Y (2010) Antibacterial properties of nine pure metals: a laboratory study using Staphylococcus aureus and Escherichia coli. Biofouling 26(7):851–858

    Article  CAS  PubMed  Google Scholar 

  • Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Article  Google Scholar 

  • Zhang X, Wang L, Levänen E (2013) Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv 3(30):12003–12020

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena P. Ivanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nguyen, S.H., Webb, H.K., Crawford, R.J., Ivanova, E.P. (2015). Natural Antibacterial Surfaces. In: Ivanova, E., Crawford, R. (eds) Antibacterial Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-18594-1_2

Download citation

Publish with us

Policies and ethics