Skip to main content

Introduction to Antibacterial Surfaces

  • Chapter
Antibacterial Surfaces

Abstract

Colonisation of surfaces by bacteria occurs commonly in the environment. When this colonisation occurs on materials that are used in modern civilization, it is most often a detrimental process. This can range from bacteria being responsible for the infection of medical implants or tissues causing infection to humans or animals, to biological layers being built-up on ships or in air-conditioning systems causing increased drag and fuel costs. In each case, the result is undesirable, and therefore it is highly desirable to identify ways by which the growth of bacteria on surfaces can be eliminated or controlled. This can be achieved through preventing the initial adhesion of cells, and/or by killing any cells that are able to attach to the surface. In this chapter, a brief overview is provided regarding some of the issues associated with the attachment of bacteria to surfaces, together with a description of the main strategies currently being employed for controlling the initial attachment processes. These strategies will be expanded upon in the subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ager BP, Tickner JA (1983) The control of microbiological hazards associated with air-conditioning and ventilation systems. Ann Occup Hyg 27(4):341–358

    Article  CAS  PubMed  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8

    Article  CAS  Google Scholar 

  • Baum C, Meyer W, Stelzer R, Fleischer LG, Siebers D (2002) Average nanorough skin surface of the pilot whale (Globicephala melas, Delphinidae): considerations on the self-cleaning abilities based on nanoroughness. Mar Biol 140(3):653–657

    Article  Google Scholar 

  • Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15(3):181–186

    Article  CAS  PubMed  Google Scholar 

  • Bixler GD, Theiss A, Bhushan B, Lee SC (2014) Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. J Colloid Interface Sci 419:114–133

    Article  CAS  PubMed  Google Scholar 

  • Boles BR, Horswill AR (2011) Staphylococcal biofilm disassembly. Trends Microbiol 19(9):449–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bos R, Van Der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol Rev 23(2):179–229

    Article  CAS  PubMed  Google Scholar 

  • Callow ME, Callow JA (2002) Marine biofouling: a sticky problem. Biologist 49(1):10–14

    PubMed  Google Scholar 

  • Chain E, Florey HW, Adelaide MB, Gardner AD, Oxfd DM, Heatley NG, Jennings MA, Orr-Ewing J, Sanders AG (1940) Penicillin as a chemotherapeutic agent. Lancet 236(6104):226–228

    Article  Google Scholar 

  • Dalton HM, March PE (1998) Molecular genetics of bacterial attachment and biofouling. Curr Opin Biotechnol 9(3):252–255

    Article  CAS  PubMed  Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28(3):261–289

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Jiang L (2004) Water-repellent legs of water striders. Nature 432(7013):36

    Article  CAS  PubMed  Google Scholar 

  • Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36(8):1263–1269

    Article  CAS  PubMed  Google Scholar 

  • Gilbert Y, Veillette M, Duchaine C (2010) Airborne bacteria and antibiotic resistance genes in hospital rooms. Aerobiologia 26(3):185–194

    Article  Google Scholar 

  • Gu X, Zheng Y, Cheng Y, Zhong S, Xi T (2009a) In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30(4):484–498

    Article  CAS  PubMed  Google Scholar 

  • Gu XN, Zheng W, Cheng Y, Zheng YF (2009b) A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate. Acta Biomater 5(7):2790–2799

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Su X, Hou G, Liu Z, Mei Z (2012) Fabrication of superhydrophobic TiO2 surface with cactus-like structure by a facile hydrothermal approach. Colloids Surf A Physicochem Eng Asp 395:70–74

    Article  CAS  Google Scholar 

  • Haensch S, Bianucci R, Signoli M, Rajerison M, Schultz M, Kacki S, Vermunt M, Weston DA, Hurst D, Achtman M, Carniel E, Bramanti B (2010) Distinct clones of Yersinia pestis caused the Black Death. PLoS Pathog 6:e1001134

    Article  PubMed Central  PubMed  Google Scholar 

  • Haldar J, Chen J, Tumpey TM, Gubareva LV, Klibanov AM (2008) Hydrophobic polycationic coatings inactivate wild-type and zanamivir- and/or oseltamivir-resistant human and avian influenza viruses. Biotechnol Lett 30(3):475–479

    Article  CAS  PubMed  Google Scholar 

  • Hasan J, Webb HK, Truong VK, Pogodin S, Baulin VA, Watson GS, Watson JA, Crawford RJ, Ivanova EP (2012) Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Appl Microbiol Biotechnol 97(20):9257–9262

    Article  PubMed  Google Scholar 

  • Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31:295–304

    Article  CAS  PubMed  Google Scholar 

  • Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200(1–2):103–134

    Article  CAS  Google Scholar 

  • In S, Orlov A, Berg R, García F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J Am Chem Soc 129(45):13790–13791

    Article  CAS  PubMed  Google Scholar 

  • Ivanova EP, Hasan J, Truong VK, Wang JY, Raveggi M, Fluke C, Crawford RJ (2011) The influence of nanoscopically thin silver films on bacterial viability and attachment. Appl Microbiol Biotechnol 91:1149–1157

    Article  CAS  PubMed  Google Scholar 

  • Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, Baulin VA, Pogodin S, Wang JY, Tobin MJ, Löbbe C, Crawford RJ (2012) Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small 8(16):2489–2494

    Article  CAS  PubMed  Google Scholar 

  • Ivanova EP, Hasan J, Webb KW, Gervinskas G, Juodkazis S, Truong VK, Wu AHF, Lamb RN, Baulin VA, Watson GS, Watson JA, Mainwaring DE, Crawford RJ (2013) Bactericidal activity of black silicon. Nat Commun 4:2838–2844

    Article  PubMed Central  PubMed  Google Scholar 

  • Kjelleberg S, Molin S (2002) Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol 5(3):254–258

    Article  CAS  PubMed  Google Scholar 

  • Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. J Am Med Assoc 298(15):1763–1771

    Article  CAS  Google Scholar 

  • Lee W, Jin MK, Yoo WC, Lee JK (2004) Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir 20(18):7665–7669

    Article  CAS  PubMed  Google Scholar 

  • Lowy FD (2003) Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Investig 111(9):1265–1273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098

    PubMed Central  CAS  PubMed  Google Scholar 

  • Michels HT, Wilks SA, Noyce JO, Keevil CW (2005) Copper alloys for human infectious disease control. In: Proceedings of the materials science and technology conference, copper for the 21st century symposium, Pittsburgh, PA, September, pp 1–13

    Google Scholar 

  • Ochman H, Lawrence JG, Grolsman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304

    Article  CAS  PubMed  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  • Pogodin S, Hasan J, Baulin VA, Webb HK, Truong VK, Nguyen THP, Boshkovikj V, Fluke CJ, Watson GS, Watson JA, Crawford RJ, Ivanova EP (2013) Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J 104(4):835–840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Winter J, Gallert C (2012) Long-term effects of antibiotics on the elimination of chemical oxygen demand, nitrification, and viable bacteria in laboratory-scale wastewater treatment plants. Arch Environ Contam Toxicol 63(3):354–364

    Article  CAS  PubMed  Google Scholar 

  • Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27(1):87–98

    Article  CAS  PubMed  Google Scholar 

  • Simões M, Simões LC, Vieira MJ (2009) Species association increases biofilm resistance to chemical and mechanical treatments. Water Res 43(1):229–237

    Article  PubMed  Google Scholar 

  • Sun M, Watson GS, Zheng Y, Watson JA, Liang A (2009) Wetting properties on nanostructured surfaces of cicada wings. J Exp Biol 212(19):3148–3155

    Article  PubMed  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3(9):711–721

    Article  CAS  PubMed  Google Scholar 

  • Watson GS, Cribb BW, Watson JA (2011) Contrasting micro/nano architecture on termite wings: two divergent strategies for optimising success of colonisation flights. PLoS ONE 6(9):Art. No. e24368:1–10

    Google Scholar 

  • World Health Organization (2015) Tuberculosis. Fact sheet No 104. Retrieved 20 Aug 2015

    Google Scholar 

  • World Health Organization (2014) Antimicrobial resistance. Global report on surveillance. Retrieved 27 Oct 2014

    Google Scholar 

  • Yang WJ, Neoh KG, Kang ET, Teo SLM, Rittschof D (2014) Polymer brush coatings for combating marine biofouling. Prog Polym Sci 39(5):1017–1042

    Article  CAS  Google Scholar 

  • Zegers RHC, Weigl A, Steptoe A (2009) The death of Wolfgang Amadeus Mozart: an epidemiological perspective. Ann Intern Med 151:274–278

    Article  PubMed  Google Scholar 

  • Zhang G, Zhang J, Xie G, Liu Z, Shao H (2006) Cicada wings: a stamp from nature for nanoimprint lithography. Small 2(12):1440–1443

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena P. Ivanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Webb, H.K., Crawford, R.J., Ivanova, E.P. (2015). Introduction to Antibacterial Surfaces. In: Ivanova, E., Crawford, R. (eds) Antibacterial Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-18594-1_1

Download citation

Publish with us

Policies and ethics