Skip to main content

Cubic Curves over Finite Fields

  • Chapter
Rational Points on Elliptic Curves

Part of the book series: Undergraduate Texts in Mathematics ((UTM))

  • 12k Accesses

Abstract

In this chapter we look at cubic equations over a finite field, the field of integers modulo p. We denote this field by \(\mathbb{F}_{p}\). Of course, now we cannot visualize things, but we can look at polynomial equations

$$\displaystyle{C: F(x,y) = 0}$$

with coefficients in \(\mathbb{F}_{p}\) and ask for solutions (x, y) with \(x,y \in \mathbb{F}_{p}\). More generally, we can look for solutions \(x,y \in \mathbb{F}_{q}\), where \(\mathbb{F}_{q}\) is an extension field of \(\mathbb{F}_{p}\) containing q = p e elements. We call such a solution a point on the curve C. If the coordinates x and y of a solution lie in \(\mathbb{F}_{p}\), we call it a rational point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We define and study cubic curves that do have complex multiplication in Chapter 6

  2. 2.

    In theory and in practice, there are many methods that are used to check if a number is prime or composite. If you are interested in learning more about this topic, look up “primality testing,” or more specifically the “Miller–Rabin test” and the “Agrawal–Kayal–Saxena (AKS) test.”

  3. 3.

    In practice, one can use more efficient bookkeeping to avoid storing the whole table of values; see Exercise 4.23.

  4. 4.

    If a and n are not relatively prime, then Fermat’s little theorem cannot be used. But in the unlikely event that \(\gcd (a,n) > 1\), the gcd is already a non-trivial factor of n.

  5. 5.

    If the two prime factors of N = pq are of approximately the same size, then the number field sieve is faster than the elliptic curve factorization method described in Section 4.4. But if p is significantly smaller than q, then the elliptic curve method may be faster, since it takes roughly \(e^{c\sqrt{\log p}}\) steps to factor N.

  6. 6.

    We will always assume that P and Q are chosen so that there is such an m.

  7. 7.

    These are all actual real-world applications, although some use something called a digital signature, rather than a public key cryptosystem.

References

  1. H. Hasse, Beweis des Analogons der Riemannschen Vermutung für die Artinschen und F.K. Schmidtschen Kongruenzzetafunktionen in gewissen elliptischen Fällen. Nachr. Ges. Wiss. Göttingen, Math.-Phys. K. 253–262 (1933)

    Google Scholar 

  2. A. Weil, Sur les courbes algébriques et les variétés qui s’en déduisent. Actualités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945). Hermann et Cie., Paris, 1948

    Google Scholar 

  3. A. Weil, Numbers of solutions of equations in finite fields. Bull. Am. Math. Soc. 55, 497–508 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Deligne, La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math. 43, 273–307 (1974)

    Article  MathSciNet  Google Scholar 

  5. E. Kummer, De residuis cubicis disquisitiones nonnullae analyticae. J. Reine Angew. Math. 32, 341–359 (1846)

    Article  MATH  Google Scholar 

  6. D.R. Heath-Brown, S.J. Patterson, The distribution of Kummer sums at prime arguments. J. Reine Angew. Math. 310, 111–130 (1979)

    MATH  MathSciNet  Google Scholar 

  7. A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. Math. (2) 141(3), 443–551 (1995)

    Google Scholar 

  8. R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141(3), 553–572 (1995)

    Google Scholar 

  9. C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Am. Math. Soc. 14(4), 843–939 (electronic) (2001)

    Google Scholar 

  10. L. Clozel, M. Harris, R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations. Publ. Math. Inst. Hautes Études Sci. 108, 1–181 (2008). With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras

    Google Scholar 

  11. M. Harris, N. Shepherd-Barron, R. Taylor, A family of Calabi-Yau varieties and potential automorphy. Ann. Math. (2) 171(2), 779–813 (2010)

    Google Scholar 

  12. R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations. II. Publ. Math. Inst. Hautes Études Sci. 108, 183–239 (2008)

    Article  MATH  Google Scholar 

  13. T. Barnet-Lamb, D. Geraghty, M. Harris, R. Taylor, A family of Calabi-Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci. 47(1), 29–98 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Chenevier, M. Harris, Construction of automorphic Galois representations, II. Camb. J. Math. 1(1), 53–73 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Clozel, M. Harris, J.-P. Labesse, B.-C. Ngô (eds.) On the Stabilization of the Trace Formula. Stabilization of the Trace Formula, Shimura Varieties, and Arithmetic Applications, vol. 1 (International Press, Somerville, 2011)

    Google Scholar 

  16. S.W. Shin, Galois representations arising from some compact Shimura varieties. Ann. Math. (2) 173(3), 1645–1741 (2011)

    Google Scholar 

  17. J.M. Pollard, Theorems on factorization and primality testing. Proc. Camb. Philos. Soc. 76, 521–528 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  18. H.W. Lenstra Jr., Factoring integers with elliptic curves. Ann. Math. (2) 126(3), 649–673 (1987)

    Google Scholar 

  19. B.J. Birch, How the number of points of an elliptic curve over a fixed prime field varies. J. Lond. Math. Soc. 43, 57–60 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Hoffstein, J. Pipher, J.H. Silverman, An Introduction to Mathematical Cryptography. Undergraduate Texts in Mathematics, 2nd edn. (Springer, New York, 2014)

    Google Scholar 

  21. N. Koblitz, A Course in Number Theory and Cryptography. Graduate Texts in Mathematics, vol. 114, 2nd edn. (Springer, New York, 1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Silverman, J.H., Tate, J.T. (2015). Cubic Curves over Finite Fields. In: Rational Points on Elliptic Curves. Undergraduate Texts in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-18588-0_4

Download citation

Publish with us

Policies and ethics