Skip to main content

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2137))

Abstract

The Kolmogorov operator is a quadratic differential operator which gives a typical example of a degenerate and hypoelliptic operator. The purpose of this note is to remark that the explicit expression for the transition probability density of the diffusion process generated by the Kolmogorov operator may be regarded as the Van Vleck formula. In fact, we show that it is given by the critical value of the action integral in some adequate path space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Biane, J. Pitman, M. Yor, Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bull Am. Math. Soc. 38, 435–465 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. J.-M. Bismut, A survey of the hypoelliptic Laplacian, in Géométrie diffèrentielle, physique mathèmatique, mathèmatiques et société, II. Astérisque, vol. 322 (Société mathématique de France, Paris, 2008), pp. 39–69

    Google Scholar 

  3. J.-M. Bismut, Hypoelliptic Laplacian and Orbital Integrals (Princeton University Press, Princeton, 2011)

    MATH  Google Scholar 

  4. L. Hörmander, Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  5. N. Ikeda, S. Kusuoka, S. Manabe, Lévy’s stochastic area formula and related problems, in Stochastic Analysis, ed. by M.Cranston, M. Pinsky. Proceedings of Symposia in Pure Mathematics, vol. 57 (American Mathematical Society, Providence, 1995), pp. 281–305

    Google Scholar 

  6. A. Kolmogorov, Zufällige Bewegungen (zur Theorie der Brownschen Bewegung). Ann. Math. 35(2), 116–117 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Malliavin, Stochastic calculus of variations and hypoelliptic operators, in Proceedings of the International Symposium on Stochastic Differential Equations, Kyoto 1976, ed. by K. Itô (Kinokuniya, Tokyo, 1978), pp. 195–263

    Google Scholar 

  8. H. Matsumoto, S. Taniguchi, Wiener functionals of second order and their Lévy measures. Electron. J. Probab. 7(14), 1–30 (2002)

    MATH  MathSciNet  Google Scholar 

  9. J. Pitman, M. Yor, Infinitely divisible laws associated with hyperbolic functions. Can. J. Math. 55, 292–330 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Yor, Some Aspects of Brownian Motion. Part I: Some Special Functionals (Birkhäser, Boston, 1992)

    Google Scholar 

  11. M. Yor, Some Aspects of Brownian Motion. Part II: Some Recent Martingale Problems (Birkhäser, Boston, 1997)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by Grants-in-Aid for Scientific Research (C) No.26400144 of Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ikeda, N., Matsumoto, H. (2015). The Kolmogorov Operator and Classical Mechanics. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) In Memoriam Marc Yor - Séminaire de Probabilités XLVII. Lecture Notes in Mathematics(), vol 2137. Springer, Cham. https://doi.org/10.1007/978-3-319-18585-9_21

Download citation

Publish with us

Policies and ethics