Skip to main content

Martingale Inequalities for the Maximum via Pathwise Arguments

  • Chapter
In Memoriam Marc Yor - Séminaire de Probabilités XLVII

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2137))

Abstract

We study a class of martingale inequalities involving the running maximum process. They are derived from pathwise inequalities introduced by Henry-Labordère et al. (Ann. Appl. Probab., 2015 [arxiv:1203.6877v3]) and provide an upper bound on the expectation of a function of the running maximum in terms of marginal distributions at n intermediate time points. The class of inequalities is rich and we show that in general no inequality is uniformly sharp—for any two inequalities we specify martingales such that one or the other inequality is sharper. We use our inequalities to recover Doob’s L p inequalities. Further, for p = 1 we refine the known inequality and for p < 1 we obtain new inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “This paper, alike the volume, is dedicated to the memory of Professor Marc Yor, who was my PhD supervisor and my mentor. I remain deeply indebted for all the help and advice he has given me over the years. I shall miss him greatly and will remember him as a brilliant but humble scholar, a passionate mathematician who was immensely generous in sharing his knowledge and ideas. Above all, he loved and enjoyed mathematics and I hope he would have liked this simple story about martingale inequalities.” Jan Obloj

  2. 2.

    This follows by applying the optional sampling theorem at the stopping time \(\inf \{t \geq 0: X_{t}\notin (0,n)\}\) and using dominated convergence theorem when letting \(n \rightarrow \infty \).

References

  1. B. Acciaio, M. Beiglböck, F. Penkner, W. Schachermayer, J. Temme, A trajectorial interpretation of Doob’s martingale inequalities. Ann. Appl. Probab. 23(4), 1494–1505 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Azéma, M. Yor, Le problème de Skorokhod: compléments à “Une solution simple au problème de Skorokhod”, in Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/1978). Lecture Notes in Mathematics, vol.721 (Springer, Berlin, 1979), pp. 625–633

    Google Scholar 

  3. J. Azéma, M. Yor, Une solution simple au problème de Skorokhod, in Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/1978), ed. by C. Dellacherie, P.-A. Meyer, M. Weil. Lecture Notes in Mathematics, vol. 721 (Springer, Berlin, 1979), pp. 90–115

    Google Scholar 

  4. J. Azéma, R.F. Gundy, M. Yor, Sur l’intégrabilité uniforme des martingales continues, in Seminar on Probability, XIV (Paris, 1978/1979) (French). Lecture Notes in Mathematics, vol. 784 (Springer, Berlin, 1980), pp. 53–61

    Google Scholar 

  5. M. Beiglböck, M. Nutz, Martingale inequalities and deterministic counterparts. Electron. J. Probab. 19(95), 1–15 (2014)

    MathSciNet  Google Scholar 

  6. M. Beiglböck, P. Siorpaes, Pathwise versions of the Burkholder-Davis-Gundy inequality (2013) [arXiv.org, 1305.6188v1]

    Google Scholar 

  7. D. Blackwell, L.E. Dubins, A converse to the dominated convergence theorem. Ill. J. Math. 7, 508–514 (1963)

    MATH  MathSciNet  Google Scholar 

  8. B. Bouchard, M. Nutz, Arbitrage and duality in nondominated discrete-time models. Ann. Appl. Probab. 25(2), 823–859 (2015)

    Article  MathSciNet  Google Scholar 

  9. H. Brown, D. Hobson, L.C.G. Rogers, The maximum maximum of a martingale constrained by an intermediate law. Probab. Theory Relat. Fields 119(4), 558–578 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Carraro, N. El Karoui, J. Obłój, On Azéma-Yor processes, their optimal properties and the Bachelier-Drawdown equation. Ann. Probab. 40(1), 372–400 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. A.M.G. Cox, G. Peskir, Embedding laws in diffusions by functions of time. Ann. Probab. (2015, to appear) [arXiv:1201.5321v3]

    Google Scholar 

  12. A.M.G. Cox, J. Wang, Root’s barrier: construction, optimality and applications to variance options. Ann. Appl. Probab. 23(3), 859–894 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. A.M.G. Cox, D. Hobson, J. Obłój, Pathwise inequalities for local time: applications to Skorokhod embeddings and optimal stopping. Ann. Appl. Probab. 18(5), 1870–1896 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. L.E. Dubins, D. Gilat, On the distribution of maxima of martingales. Proc. Am. Math. Soc. 68(3), 337–338 (1978)

    MATH  MathSciNet  Google Scholar 

  15. P. Henry-Labordère, J. Obłój, P. Spoida, N. Touzi, The maximum maximum of a martingale with given n marginals. Ann. Appl. Probab. (2015, to appear) [arxiv:1203.6877v3]

    Google Scholar 

  16. D.G. Hobson, Robust hedging of the lookback option. Finance Stochast. 2(4), 329–347 (1998)

    Article  MATH  Google Scholar 

  17. D.B. Madan, M. Yor, Making Markov martingales meet marginals: with explicit constructions. Bernoulli 8(4), 509–536 (2002)

    MATH  MathSciNet  Google Scholar 

  18. J. Obłój, P. Spoida, An iterated Azéma-Yor type embedding for finitely many marginals (2013) [arXiv.org, 1304.0368v2]

    Google Scholar 

  19. J. Obłój, M. Yor, On local martingale and its supremum: harmonic functions and beyond, in From Stochastic Calculus to Mathematical Finance (Springer, Heidelberg, 2006), pp. 517–534

    Google Scholar 

  20. A. Osȩkowski, Sharp Martingale and Semimartingale Inequalities (Birkhäuser, New York, 2012)

    Book  Google Scholar 

  21. G. Peskir, Optimal stopping of the maximum process: the maximality principle. Ann. Probab. 26(4), 1614–1640 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. L.C.G. Rogers, A guided tour through excursions. Bull. Lond. Math. Soc. 21(4), 305–341 (1989)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 335421 (Jan Obłój) and (FP7/2007-2013)/ERC grant agreement no. 321111 (Nizar Touzi).

The author “Jan Obłój” is grateful to the Oxford-Man Institute of Quantitative Finance and St. John’s College in Oxford for their support. The author “Peter Spoida” gratefully acknowledges scholarships from the Oxford-Man Institute of Quantitative Finance and the DAAD. The author “Nizar Touzi” gratefully acknowledges the financial support from the Chair Financial Risks of the Risk Foundation sponsored by Société Générale, and the Chair Finance and Sustainable Development sponsored by EDF and CA-CIB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Obłój .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Obłój, J., Spoida, P., Touzi, N. (2015). Martingale Inequalities for the Maximum via Pathwise Arguments. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) In Memoriam Marc Yor - Séminaire de Probabilités XLVII. Lecture Notes in Mathematics(), vol 2137. Springer, Cham. https://doi.org/10.1007/978-3-319-18585-9_11

Download citation

Publish with us

Policies and ethics