Skip to main content

Static Elasticity in a Riemannian Manifold

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 137))

Abstract

We discuss the equations of elastostatics in a Riemannian manifold, which generalize those of classical elastostatics in the three-dimensional Euclidean space. Assuming that the deformation of an elastic body arising in response to given loads should minimize over a specific set of admissible deformations the total energy of the elastic body, we derive the equations of elastostatics in a Riemannian manifold first as variational equations, then as a boundary value problem. We then show that this boundary value problem possesses a solution if the loads are sufficiently small in a specific sense. The proof is constructive and provides an estimation for the size of the loads.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abraham R, Marsden JE, Ratiu T (1988) Manifolds, tensor analysis, and applications. Springer, New York

    Book  MATH  Google Scholar 

  2. Amrouche C, Girault V (1994) Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czech Math J 44:109–140

    MathSciNet  MATH  Google Scholar 

  3. Andersson L, Beig R, Schmidt BG (2008) Static self-gravitating elastic bodies in Einstein gravity. Commun Pure Appl Math LXI:0988–1023

    Article  MathSciNet  Google Scholar 

  4. Aubin T (2010) Some nonlinear problems in Riemannian geometry. Springer, Berlin

    Google Scholar 

  5. Beig R, Schmidt BG (2003) Relativistic elasticity. Class Quantum Gravity 20:889–904

    Article  MathSciNet  MATH  Google Scholar 

  6. Beig R, Schmidt BG (2003) Static, self-gravitating elastic bodies. Proc R Soc Lond A 459:109–115

    Google Scholar 

  7. Beig R, Schmidt BG (2005) Relativistic elastostatics. I. Bodies in rigid rotation. Class Quantum Gravity 22:2249–2268

    Article  MathSciNet  MATH  Google Scholar 

  8. Beig R, Wernig-Pichler M (2007) On the motion of a compact elastic body. Commun Math Phys 271:455–465

    Article  MathSciNet  MATH  Google Scholar 

  9. Carter B, Quintana H (1972) Foundations of general relativistic high-pressure elasticity theory. Proc R Soc Lond A 331:57–83

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen W, Jost J (2002) A Riemannian version of Korn’s inequality. Calc Var 14:517–530

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet PG (1988) Mathematical elasticity, volume I: three-dimensional elasticity. North-Holland, Amsterdam

    Google Scholar 

  12. Ciarlet PG (2005) An introduction to differential geometry with applications to elasticity. Springer, Dordrecht

    Google Scholar 

  13. Ciarlet PG, Mardare C (2012) On the Newton-Kantorovich theorem. Anal Appl 10:249–269

    Google Scholar 

  14. Duvaut G, Lions JL (1978) Inequalities in mechanics and physics. Springer, New York

    Google Scholar 

  15. Efrati E, Sharon E, Kupferman R (2009) Elastic theory of unconstrained non-euclidean plates. J Mech Phys Solids 57:762–775

    Article  MathSciNet  MATH  Google Scholar 

  16. Epstein M, Segev R (1980) Differentiable manifolds and the principle of virtual work in continuum mechanics. J Math Phys 21:1243–1245

    Article  MathSciNet  MATH  Google Scholar 

  17. Grubic N, LeFloch PG, Mardare C (2014) Mathematical elasticity theory in a Riemannian manifold. J Math Pures Appl 102:1121–1163

    Google Scholar 

  18. Kondrat’ev VA, Oleinik OA (1989) On the dependence of the constant in Korn’s inequality on parameters characterising the geometry of the region. Uspekhi Mat Nauk 44:153–160 (Russ Math Surv 44:187–195)

    Google Scholar 

  19. Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, New Jersey

    MATH  Google Scholar 

  20. Nomizu K (1960) On local and global existence of Killing vector fields. Ann Math 72:105–120

    Article  MathSciNet  MATH  Google Scholar 

  21. Segev R (1986) Forces and the existence of stresses in invariant continuum mechanics. J Math Phys 27:163–170

    Article  MathSciNet  MATH  Google Scholar 

  22. Segev R (2000) The geometry of Cauchy’s fluxes. Arch Ration Mech Anal 154:183–198

    Article  MathSciNet  MATH  Google Scholar 

  23. Segev R (2001) A correction of an inconsistency in my paper: Cauchy’s theorem on manifolds. J Elast 63:55–59

    Article  MathSciNet  MATH  Google Scholar 

  24. Segev R, Rodnay G (1999) Cauchy’s theorem on manifolds. J Elast 56:129–144

    Article  MathSciNet  MATH  Google Scholar 

  25. Simpson HC, Spector SJ (2009) Applications of estimates near the boundary to regularity of solutions in linearized elasticity. SIAM J Math Anal 41:923–935

    Article  MathSciNet  MATH  Google Scholar 

  26. Valent T (1988) Boundary value problems of finite elasticity: local theorems on existence, uniqueness, and analytic dependence on data. Springer, New York

    Book  MATH  Google Scholar 

  27. Wernig-Pichler M (2006) Relativistic elastodynamics. arXiv:gr-qc/0605025v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristinel Mardare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mardare, C. (2015). Static Elasticity in a Riemannian Manifold. In: Chen, GQ., Grinfeld, M., Knops, R. (eds) Differential Geometry and Continuum Mechanics. Springer Proceedings in Mathematics & Statistics, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-319-18573-6_11

Download citation

Publish with us

Policies and ethics