Advertisement

Shewanella oneidensis and Extracellular Electron Transfer to Metal Oxides

  • Daad Saffarini
  • Ken Brockman
  • Alex Beliaev
  • Rachida Bouhenni
  • Sheetal Shirodkar
Chapter

Abstract

Anaerobic metal reduction by bacteria plays an important role in biogeochemical cycles, bioremediation, and in biotechnological applications such as electricity generation. Shewanella oneidensis is one of the best-studied metal reducing bacteria and its analysis led to the identification of the mechanisms this bacterium uses for respiratory metal reduction. The major proteins involved in metal reduction in S. oneidensis consist of an outer membrane decaheme c-type cytochrome (MtrC), an outer membrane porin (MtrB) and a periplasmic decaheme c-type cytochrome (MtrA). These proteins form a complex that is located on the outer cell surface and transfers electrons extracellularly to the metal oxides. Although other proteins, such as the outer membrane decaheme c-type cytochrome OmcA, are thought to be involved in metal reduction, their role in this process appears to be minor. Several mechanisms to explain the extracellular electron transfer to metal oxides have been proposed. These include direct contact of cells with metal oxides, the use of flavins or electron shuttles, and the use of conductive appendages or nanowires. Flavins, which are thought to allow metal reduction at a distance from the cells, have been shown to function as cofactors that bind to the outer membrane cytochromes and mediate electron transfer. Conductive appendages or pili, also known as nanowires, have been implicated in mediating electron transfer at a distance. However, S. oneidensis mutants that lack pili are able to reduce metals similar to the wild type. Recently, these appendages have been shown to consist of membrane extensions and membrane vesicles. Thus, metal reduction by S. oneidensis appears to be mostly the result of direct contact of cell’s outer membrane cytochromes with the insoluble metal oxides.

Keywords

Metal reduction Shewanella oneidensis Extracellular electron transfer Electron shuttles Nanowires MtrC MtrA MtrB 

References

  1. 1.
    Baron D, LaBelle E, Coursolle D, Gralnick J, Bond D (2009) Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem 284:28865–28873Google Scholar
  2. 2.
    Beliaev A, Saffarini D (1998) Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol 180:6292–6297Google Scholar
  3. 3.
    Beliaev A, Saffarini D, McLaughlin J, Hunnicut D (2001) MtrC, an outer membrane decaheme c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol 39:722–730Google Scholar
  4. 4.
    Beliaev A, Thompson D, Khare T, Lim H, Brandt C, Li G, Murray A, Heidelberg J, Giometti C, Yates J, Nealson K, Tiedje J, Zhou G (2002) Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors. OMICS 6Google Scholar
  5. 5.
    Beliaev AS, Klingeman DM, Klappenbach JA, Wu L, Romine MF, Tiedje JM, Nealson KH, Fredrickson JK, Zhou J (2005) Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J Bacteriol 187:7138–7145Google Scholar
  6. 6.
    Bencheikh-Latmani R, Williams SM, Haucke L, Criddle CS, Wu L, Zhou J, Tebo BM (2005) Global transcriptional profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) reduction. Appl Environ Microbiol 71:7453–7460Google Scholar
  7. 7.
    Bodemer G, Antholine W, Basova L, Saffarini D, Pacheco I (2010) The effect of detergents and lipids on the properties of the outer-membrane OmcA from Shewanella oneidensis. J Biol Inorg Chem 15:749–758Google Scholar
  8. 8.
    Bordi C, Ansaldi M, Gon S, Jourlin-Castelli C, Iobbi-Nivol C, Mejean V (2004) Genes regulated by TorR, the trimethylamine oxide response regulator of Shewanella oneidensis. J Bacteriol 186:4502–4509Google Scholar
  9. 9.
    Borloo J, de Smet L, Van Beeumen J, Devreese B (2011) Bacterial two-hybrid analysis of the Shewanella oneidensis MR-1 multi-component electron transfer pathway JIOMICS 1:260–267Google Scholar
  10. 10.
    Bouhenni R (2007) Investigation of the mechanisms of iron(III) and manganese(IV) reduction in Shewanella oneidensis MR-1. University of Wisconsin-Milwaukee, MilwaukeeGoogle Scholar
  11. 11.
    Bouhenni R, Vora G, Biffinger J, Shirodkar S, Brockman K, Ray R, Wu P, Johnson B, Biddle E, Marshall M, Fizgerald L, Little B, Fredrickson J, Beliaev A, Ringeison B, Saffarini D (2010) The role of Shewanella oneidesis outer surface structures in extracellular electron transfer. Electroanalysis 22:856–864Google Scholar
  12. 12.
    Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, Culley DE, Reardon CL, Barua S, Romine MF, Zhou J, Beliaev AS, Bouhenni R, Saffarini D, Mansfeld F, Kim BH, Fredrickson JK, Nealson KH (2007) Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol 73:7003–7012Google Scholar
  13. 13.
    Brown R, Romine M, Schepmoes A, Smith RD, Lipton MS (2010) Mapping the subcellular proteome of Shewanella oneidensis MR-1 using sarkosyl-based fractionation and LC-MS/MS identification. J Proteome Res 9:4454–4463Google Scholar
  14. 14.
    Brutinel E, Gralnick J (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93:41–48Google Scholar
  15. 15.
    Bucking C, Popp F, Kerzenmacher S, Gescher JS (2010) Involvement and specificity of Shewanella oneidensis outer membrane cytochromes in the reduction of soluble and solid-phase terminal electron acceptors. FEMS Micorbiol Lett 306:144–151Google Scholar
  16. 16.
    Burns J, DiChristina T (2009) Anaerobic respiration of elemental sulfur and thiosulfate bu Shewanella oneidensis MR-1 requires psrA, a homolog of the phs gene of Salmonella enterica serovar typhimurium LT2. Appl Environ Microbiol 75:5209–5217Google Scholar
  17. 17.
    Charania M, Brockman K, Zhang Y, Banerjee A, Pinchuk G, Fredrickson J, Beliaev A, Saffarini D (2009) Involvement of a membrane-bound class III adenylate cyclase in the regulation of anaerobic respiration in Shewanella oneidensis MR-1. J Bacteriol 191:4298–4306Google Scholar
  18. 18.
    Clarke T, Edwards M, Gates A, Hall A, White G, Bradley J, Reardon CL, Shi L, Beliaev A, Marshall M, Wang Z, Watmough N, Fredrickson J, Zachara J, Butt J, Richardson D (2011) Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci USA 108:9384–9389Google Scholar
  19. 19.
    Cordova CD, Schicklberger M, Yu Y, Spormann A (2011) Partial functional replacement of CymA by SirCD in Shewanella oneidensis MR-1. J Bacteriol 193:2312–2321Google Scholar
  20. 20.
    Coursolle D, Gralnick J (2012) Reconstruction of extracellular respiratory pathways for iron(III) reduction in Shewanella oneidensis strain MR-1. Front Microbiol 3:11Google Scholar
  21. 21.
    Cruz-Garcia C, Murray AE, Klappenbach JA, Stewart V, Tiedje J (2007) Respiratory nitrate ammonification by Shewanella oneidensis MR-1. J Bacteriol 189:656–662Google Scholar
  22. 22.
    Cummings D, Caccavo F, Spring S, Rosenzweig R (1999) Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing miroorganism isolated from mining-impacted freshwater lake sediment. Arch Microbiol 171:183–188Google Scholar
  23. 23.
    Cummings D, March A, Bostick B, Spring S, Caccavo F, Fendorf S, Rosenzweig R (2000) Evidence of microbial Fe(III) reduction in anoxic mining-impacted lake sediments (Lake Coeur d’Alene, Idaho). Appl Environ Microbiol 66:154–162Google Scholar
  24. 24.
    Dohnalkova A, Marshall M, Arey B, Williams K, Buck E, Fredrickson J (2011) Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy. Appl Environ Microbiol 77:1254–1262Google Scholar
  25. 25.
    Dos Santos J, Iobbi-Nivol C, Couillault C, Giordano G, Mejean V (1998) Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species. J Mol Biol 284:421–433Google Scholar
  26. 26.
    Duncan G, McMillan G, Marritt S, Firer-Sherwood M, Shi L, Richardson D, Evans S, Elliott S, Butt J, Jeuken L (2014) Protein-protein interaction regulates the direction of catalysis and electron transfer in a redox enzyme complex. J Am Chem Soc 135:10550–10556Google Scholar
  27. 27.
    Edwards M, Fredrickson J, Zachara J, Richardson D, Clarke T (2012) Analysis of structural MtrC models based on homology with the crystal structure of MtrF. Biochem Soc Trans 40:1181–1185Google Scholar
  28. 28.
    Edwards M, Hall A, Shi L, Fredrickson J, Zachara J, Butt J, Richardson D, Clarke T (2012) The crystal structure of the extracellular 11-heme cytochrome UndA reveals a conserved 10-heme motif and defined binding site for soluble iron chelates. Structure 20:1275–1284Google Scholar
  29. 29.
    Edwards M, Nanakow B, Johs A, Tomanicek S, Liang L, Shi L, Fredrickson J, Zachara J, Gates A, Butt J, Richardson D, Clark M (2014) The X-ray crystal structure of Shewanella oneidensis OmcA reveals new insight at the microbe-metal interface. FEBS Lett 588:1886–1890Google Scholar
  30. 30.
    El-Naggar M, Wagner G, Leung K, Yuzvinsky T, Southam G, Yang J, Lau W, Nealson K, Gorby U (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci USA 107:18127–18131Google Scholar
  31. 31.
    Emerson D, Roden E, Twining B (2012) The microbial ferrous wheel: iron cycling in terrestrial, freshwater, and marine environments. Front Microbiol 3:383Google Scholar
  32. 32.
    Firer-Sherwood M, Ando N, Drennan C, Elliott S (2011) Solution-based structural analysis of the decaheme cytochrome, MtrA, by small-angle-X-ray scattering and analytical ultracentrifugation. J Phys Chem 115:11208–11214Google Scholar
  33. 33.
    Firer-Sherwood M, Bewley K, Mock J-Y, Elliott S (2011) Tools for resolving complexity in the electron transfer netwroks of multiheme cytochromes c. Metallomics 3:344–348Google Scholar
  34. 34.
    Fonseca B, Paquete C, Neto S, Pacheco I, Soares C, Louro R (2013) Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1. Biochem J 449:101–108Google Scholar
  35. 35.
    Francis CA, Obraztsova AY, Tebo BM (2000) Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl Environ Microbiol 66:543–548Google Scholar
  36. 36.
    Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JL, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM (2008) Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6:592–603Google Scholar
  37. 37.
    Gao H, Yang Z, Barua S, Reed S, Romine M, Nealson K, Fredrickson J, Tiedje J, Zhou J (2009) Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA. ISME J 3:966–976Google Scholar
  38. 38.
    Gon S, Patte J, Dos Santos J, Mejean V (2002) Reconstitution of the trimethylamine oxide reductase regulatory elements of Shewanella oneidensis in Escherichia coli. J Bacteriol 184:1262–1269Google Scholar
  39. 39.
    Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358–11363Google Scholar
  40. 40.
    Gralnick JA, Newman D (2007) Extracellular respiration. Mol Microbiol 65:1–11Google Scholar
  41. 41.
    Gralnick JA, Vali H, Lies DP, Newman DK (2006) Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc Natl Acad Sci USA 103:4669–4674Google Scholar
  42. 42.
    Hartshorne RS, Jepson BN, Clarke TA, Field SJ, Fredrickson J, Zachara J, Shi L, Butt JN, Richardson DJ (2007) Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. J Biol Inorg Chem 12:1083–1094Google Scholar
  43. 43.
    Hau H, Gralnick J (2007) Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 61:237–258Google Scholar
  44. 44.
    Heidelberg J, Paulsen I, Nealson K, Gaidos E, Nelson W, Read T et al (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20:1118–1123Google Scholar
  45. 45.
    Jensen H, Albers A, Malley K, Londer Y, Cohen B, Helms B, Weigele P, Grove J, Ajo-Franklin C (2010) Engineering of a synthetic electron conduit in living cells. Proc Natl Acad Sci USA 107:19213–19218Google Scholar
  46. 46.
    Johs A, Droubay T, Ankner J, Liang L (2010) Characterization of the decaheme c-type cytochrome OmcA in solution and on hematite surfaces by small angle X-ray scattering and neutron refratometry. Biophys J 98:3035–3043Google Scholar
  47. 47.
    Kashefi K, Tor JM, Holmes DE, Gaw Van Praagh CV, Reysenbach AL, Lovley DR (2002) Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52:719–728Google Scholar
  48. 48.
    Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221Google Scholar
  49. 49.
    Kirchman D (1996) Microbial Ferrous Wheel. Nature 383:303–304Google Scholar
  50. 50.
    Kotloski N, Gralnick J (2013) Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4:e00553–e00612Google Scholar
  51. 51.
    Leys D, Tsapin A, Nealson K, Meyer T, Cusanovich M, Van Beeumen J (1999) Structure and mechanisms of the flavocytochrome c reductase of Shewanella putrefaciens MR-1. Nat Struct Biol 6:1113–1117Google Scholar
  52. 52.
    Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol Bioeng 80:637–649Google Scholar
  53. 53.
    Lovley D (2006) Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E (eds) The prokaryotes, vol. 2. Springer, Berlin, pp 635–658Google Scholar
  54. 54.
    Lovley D, Phillips E (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron and manganese. Appl Environ Microbiol 54:1472–1480Google Scholar
  55. 55.
    Lower B, Shi L, Yongsunthon R, Droubay T, McCready D, Lower SK (2007) Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. J Bacteriol 189:4944–4952Google Scholar
  56. 56.
    Lower B, Yongsunthon R, Shi L, Wilding L, Gruber H, Wigginton NS, Reardon CL, Pinchuk G, Droubay T, Boily J, Lower SK (2009) Antibody recognition force microscopy shows that outer membrane cytochromes OmcA and MtrC are expressed on the exterior surface of Shewanella oneidensis MR-1. Appl Environ Microbiol 75:2931–2935Google Scholar
  57. 57.
    Maier T, Myers J, Myers C (2003) Identification of the gene encoding the sole physiological fumarate reductase in Shewanella oneidensis MR-1. J Basic Micorbiol 43:312–327Google Scholar
  58. 58.
    Marritt S, Lowe T, Bye J, McMillan D, Shi L, Fredrickson J, Zachara J, Richardson D, Cheesman M, Jeuken L, Butt J (2012) A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella. Biochem J 444:465–474Google Scholar
  59. 59.
    Marshall MJ, Beliaev AS, Dohnalkova AC, Kennedy DW, Shi L, Wang Z, Boyanov MI, Lai B, Kemner KM, McLean JS, Reed SB, Culley DE, Bailey VL, Simonson CJ, Saffarini DA, Romine MF, Zachara JM, Fredrickson JK (2006) c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol 4:e268Google Scholar
  60. 60.
    Marshall MJ, Plymale AE, Kennedy DW, Shi L, Wang Z, Reed SB, Dohnalkova AC, Simonson CJ, Liu C, Saffarini DA, Romine MF, Zachara JM, Beliaev AS, Fredrickson JK (2008) Hydrogenase- and outer membrane c-type cytochrome-facilitated reduction of technetium(VII) by Shewanella oneidensis MR-1. Environ Microbiol 10:125–136Google Scholar
  61. 61.
    Marsili E, Baron D, Shikhare I, Coursolle D, Gralnick J, Bond D (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968–3973Google Scholar
  62. 62.
    McLean J, Pinchuk G, Geydebrekht O, Bilskis C, Zakrajsek B, Hill E, Saffarini D, Romine M, Gorby Y, Fredrickson J, Beliaev A (2008) Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1. Environ Microbiol 10:1861–1876Google Scholar
  63. 63.
    McMillan D, Marritt S, Butt J, Jeuken L (2012) Menaquinone-7 is specific cofactor in tetraheme quinol dehydrogenase CymA. J Biol Chem 287:14215–14225Google Scholar
  64. 64.
    Meitl L, Eggleston C, Colberg P, Khare N, Reardon CL, Shi L (2009) Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochrome OmcA and MtrC with hematite electrodes. Geochim Cosmochim Acta 73:5292–5307Google Scholar
  65. 65.
    Mitchell A, Peterson L, Reardon C, Reed S, Culley D, Romine M, Geesey G (2012) Role of outer membrane c-type cytochromes MtrC and OmcA in Shewanella oneidensis MR-1 cell production, accumulation, and detachment during respiration on hematite. Geobiol 10:355–370Google Scholar
  66. 66.
    Morris CJ, Black A, Pealing S, Manson F, Chapman SK, Reid G, Gibson D, Ward FB (1944) Purification and properties of a novel cytochrome: flavocytochrome c from Shewanella putrefaciens. Biochem J 302:587–593Google Scholar
  67. 67.
    Moser D, Nealson K (1996) Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl Environ Microbiol 62:2100–2105Google Scholar
  68. 68.
    Murphy J, Durbin K, Saltikov C (2009) The functional roles of arcA, etrA, cyclic AMP (cAMP)-cAMP receptor protein, and cya in the arsenate respiration pathway in Shewanella sp. strain ANA-3. J Bacteriol 191:1035–1043Google Scholar
  69. 69.
    Murphy JN, Saltikov CW (2007) The cymA gene, encoding a tetraheme c-type cytochrome, is required for arsenate respiration in Shewanella species. J Bacteriol 189:2283–2290Google Scholar
  70. 70.
    Myers C, Nealson K (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321Google Scholar
  71. 71.
    Myers CR, Myers JM (2003) Cell surface exposure of the outer membrane cytochromes of Shewanella oneidensis MR-1. Lett Appl Microbiol 37:254–258Google Scholar
  72. 72.
    Myers CR, Myers JM (1997) Cloning and sequence of cymA, a gene encoding tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J Bacteriol 179:1143–1152Google Scholar
  73. 73.
    Myers J, Myers C (2000) Chromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J Appl Microbiol 88:98–106Google Scholar
  74. 74.
    Myers J, Myers C (2000) Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J Bacteriol 182:67–75Google Scholar
  75. 75.
    Myers JM, Antholine WE, Myers CR (2004) Vanadium(V) reduction by Shewanella oneidensis MR-1 requires menaquinone and cytochromes from the cytoplasmic and outer membranes. Appl Environ Microbiol 70:1405–1412Google Scholar
  76. 76.
    Nealson K, Saffarini D (1994) Iron and Manganese in anaerobic respiration: environmental significance, physiology, and regulation. Ann Rev Microbiol 48:311–343Google Scholar
  77. 77.
    Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–97Google Scholar
  78. 78.
    Okamoto A, Hashimoto K, Nealson K, Nakamura R (2013) Rate enhancement of bacterial extracellular electron transport involved bound flavin semiquinones. Proc Natl Acad Sci USA 110:7856–7861Google Scholar
  79. 79.
    Okamoto A, Kalathil S, Deng X, Hashimoto K, Nakamura R, Nealson K (2014) Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Sci Rep 4:5628Google Scholar
  80. 80.
    Okamoto A, Nakamura R, Nealson K, Hashimoto K (2014) Bound flavin model suggests similar electron-transfer mechanisms in Shewanella and Geobacter. ChemElectroChem 1:1808–1812Google Scholar
  81. 81.
    Okamoto A, Saito K, Inoue K, Nealson K, Hashimoto K, Nakamura R (2014) Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in Geobacter species. Energy Environ Sci 7:1357Google Scholar
  82. 82.
    Paquete C, Fonseca B, Cruz D, Periera T, Pacheco I, Soares C, Louro R (2014) Exploring the molecular mechanisms of electron shuttling across the microbe/metal space. Front Microbiol 5:318Google Scholar
  83. 83.
    Pirbadian S, Barchinger S, Leung K, Byun H, Jangir Y, Bouhenni R, Reed S, Romine M, Saffarini D, Shi L, Gorby U, Golbeck J, El-Naggar M (2014) Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci USA 111:12883–12888Google Scholar
  84. 84.
    Pitts K, Dobbin P, Reyes-Ramirez F, Thomson A, Richardson D, Seward H (2003) Characterizaton of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA. J Biol Chem 278:27758–27765Google Scholar
  85. 85.
    Qian Y, Paquete C, Louro R, Ross D, LaBelle E, Bond D, Tien M (2011) Mapping the iron binding site(s) on the small tetraheme cytochrome of Shewanella oneidensis MR-1. Biochem 50:6217–6224Google Scholar
  86. 86.
    Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101Google Scholar
  87. 87.
    Reyes C, Zhang Q, Bondarev S, Welch A, Thelen M, Saltikov C (2012) Characterization of axial and proximal histidine mutations of the decaheme cytochrome MtrA from Shewanella sp. strain ANA-3 and implications for the electron transport system. J Bacteriol 194:5840–5847Google Scholar
  88. 88.
    Richardson D, Butt J, Fredrickson J, Zachara J, Shi L, Edwards M, White G, Balden N, Gates A, Marritt S, Clarke T (2012) The ‘porin cytochrome’ model for microbe-to-mineral electron transfer. Mol Microbiol 85:201–212Google Scholar
  89. 89.
    Romine M, Carlson T, Norbeck A, McCue L, Lipton MS (2008) Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome. Appl Environ Microbiol 74:3257–3265Google Scholar
  90. 90.
    Ross DE, Brantley SL, Tien M (2009) Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1. Appl Environ Microbiol 75:5218–5226Google Scholar
  91. 91.
    Ross DE, Ruebush SS, Brantley SL, Hartshorne RS, Clarke TA, Richardson DJ, Tien M (2007) Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1. Appl Environ Microbiol 73:5797–5808Google Scholar
  92. 92.
    Saffarini DA, Schultz R, Beliaev A (2003) Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis. J Bacteriol 185:3668–3671Google Scholar
  93. 93.
    Satomi M, Fonnesbech Vogel B, Gram L, Venkateswaran K (2006) Shewanella hafniensis sp. nov. and Shewanella morhuae sp. nov., isolated from marine fish of the Baltic Sea. Int J Syst Evol Microbiol 56:243–249Google Scholar
  94. 94.
    Schicklberger M, Bücking C, Schuetz B, Heide H, Gescher J (2011) Involvement of the Shewanella oneidensis decaheme cytochrome MtrA in the periplasmic stability of the beta-barrel protein MtrB. Appl Environ Microbiol 77:1520–1523Google Scholar
  95. 95.
    Schuetz B, Schicklberger M, Kuermann J, Spormann A, Gescher J (2009) Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Appl Environ Microbiol 75:7789–7796Google Scholar
  96. 96.
    Schwalb C, Chapman SK, Reid G (2003) The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis. Biochemistry 42:9491–9497Google Scholar
  97. 97.
    Schwalb C, Chapman SK, Reid GA (2002) The membrane-bound tetrahaem c-type cytochrome CymA interacts directly with the soluble fumarate reductase in Shewanella. Biochem Soc Trans 30:658–662Google Scholar
  98. 98.
    Shi L, Belchik S, Wang Z, Kennedy D, Dohnalkova A, Marshall M, Zachara J, Fredrickson J (2011) Identification and characterization of UndAHRCR-6, an outer memrbane endecaheme c-type cytochrome of Shewanella sp. Strain HRCR-6. Appl Environ Microbiol 77:5521–5523Google Scholar
  99. 99.
    Shi L, Chen B, Wang Z, Elias DA, Mayer MU, Gorby YA, Ni S, Lower BH, Kennedy DW, Wunschel DS, Mottaz HM, Marshall MJ, Hill EA, Beliaev AS, Zachara JM, Fredrickson JK, Squier TC (2006) Isolation of a high-affinity functional protein complex between OmcA and MtrC: Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J Bacteriol 188:4705–4714Google Scholar
  100. 100.
    Shi L, Deng S, Marshall MJ, Wang Z, Kennedy DW, Dohnalkova AC, Mottaz HM, Hill EA, Gorby YA, Beliaev AS, Richardson DJ, Zachara JM, Fredrickson JK (2008) Direct involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J Bacteriol 190:5512–5516Google Scholar
  101. 101.
    Shi L, Rosso K, Clarke T, Richardson D, Zachara J, Fredrickson J (2012) Molecular underpinnings of Fe(III) oxide reduction by Shewanella oneidensis MR-1. Front Microbiol 3:1–10Google Scholar
  102. 102.
    Shirodkar S, Reed S, Romine M, Saffarini D (2011) The octaheme SirA catalyses dissimilatory sulfite reduction in Shewanella oneidensis MR-1. Environ Microbiol 13:108–115Google Scholar
  103. 103.
    Strzepek R, Maldonado M, Higgins J, Hall J, Safi K, Wilhelm S, Boyd P (2005) Spinning the “ferrous wheel”: the importance of the microbial community in an iron budget during the FeCycle experiment. Global Biogeochem Cycles 19:GB4S26Google Scholar
  104. 104.
    Tsapin A, Vandenberghe I, Nealson K, Scott J, Meyer T, Cusanovich M, Harada E, Kaizu T, Akutsu H, Leys D, Van Beeumen J (2001) Identification of a small tetraheme cytochrome c and a flavocytochrome c as two of the principal soluble cytochromes c in Shewanella oneidensis strain MR1. Appl Environ Microbiol 67:3236–3244Google Scholar
  105. 105.
    Vargas M, Malvankar N, Tremblay P-L, Leang C, Smith J, Patel P, Snoeyenbos-West O, Nevin K, Lovley D (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. mBio 4:e00105–e00113Google Scholar
  106. 106.
    Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, Burghardt J, Stackebrandt E, Nealson KH (1999) Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49(2):705–724Google Scholar
  107. 107.
    von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623Google Scholar
  108. 108.
    Wee S, Burns J, DiChristina T (2013) Identification of a molecular signature unique to metal-reducing Gammaproteobacteria. FEMS Micorbiol Lett 350:90–99Google Scholar
  109. 109.
    White G, Shi Z, Shi L, Wang Z, Dohnalkova A, Marshall M, Fredrickson J, Zachara J, Butt J, Richardson D, Clarke TA (2013) Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals. Proc Natl Acad Sci USA 110:6346–6351Google Scholar
  110. 110.
    Wigginton NS, Rosso KM, Hochella MF Jr (2007) Mechanisms of electron transfer in two decaheme cytochromes from a metal-reducing bacterium. J Phys Chem B 111:12857–12864Google Scholar
  111. 111.
    Xiong Y, Chen B, Shi L, Fredrickson J, Bigelow D, Squier TC (2011) Targeted degradation of outer membrane decaheme cytochrome MtrC metal reductase in Shewanella oneidensis MR-1 using bioarsenical probe CrAsH-EDT2. Biochem 50:9738–9751Google Scholar
  112. 112.
    Xiong Y, Shi L, Chen B, Mayer MU, Lower B, Londer Y, Bose S, Hochella MF, Fredrickson J, Squier TC (2006) High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. J Am Chem Soc 128:13978–138979Google Scholar
  113. 113.
    Xu M, Guo J, Cen Y, Zhong X, Cao W, Sun G (2005) Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int J Syst Evol Microbiol 55:363–368Google Scholar
  114. 114.
    Yang C, Rodionov DA, Li X, Laikova O, Gelfand M, Zagnitko O, Romine M, Obraztsova A, Nealson K, Osterman A (2006) Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. J Biol Chem 281:29872–79885Google Scholar
  115. 115.
    Yang Y, Chen J, Qiu D, Zhou J (2013) Roles of UndA and MtrC if Shewanella putrefaciens W3-18-1 in iron reduction. BMC Microbiol 13:267Google Scholar
  116. 116.
    Zargar K, Saltikov C (2009) Lysine-91 of the tetraheme c-type cytochrome CymA is essential for quinone interactions and arsenate respiration in Shewanella sp. strain ANA-3. Arch Microbiol 191:797–806Google Scholar
  117. 117.
    Zhang H, Tang X, Munske G, Zakharova N, Yang L, Zheng C, Wolff M, Tolic N, Anderson G, Shi L, Marshall M, Fredrickson J, Bruce J (2008) In vivo identification of the outer membrane protein OmcA-MtrC interaction network in Shewanella oneidensis MR-1 cells using novel hydrophobic chemical cross-linkers. J Proteome Res 7:1712–1720Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Daad Saffarini
    • 1
  • Ken Brockman
    • 2
  • Alex Beliaev
    • 3
  • Rachida Bouhenni
    • 4
  • Sheetal Shirodkar
    • 5
  1. 1.Department of Biological SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.The Research Institute, Nationwide Children’s HospitalThe Ohio State University College of MedicineColumbusUSA
  3. 3.Pacific Northwest National LaboratoryRichlandUSA
  4. 4.Summa Health System, Division of Opthalmology ResearchAkronUSA
  5. 5.Amity Institute of BiotechnologyUttar PradeshIndia

Personalised recommendations