Advertisement

Bacterial Copper Resistance and Virulence

  • Lucas B. Pontel
  • Susana K. Checa
  • Fernando C. Soncini
Chapter

Abstract

Copper is essential for most organisms. However, it is also toxic even at low levels, especially when its local concentration or intracellular distribution is not properly controlled. Similar to other organisms, bacteria have evolved specific copper homeostasis systems for maintaining a suitable intracellular concentration of this essential metal and at the same time, avoiding its toxic effects. Recent evidence indicates that intracellular copper actively contributes to the host innate immune response against bacterial infections and pathogens have acquired specific mechanisms to deal with this intoxicant. Here, we focus on the different arrays of metal sensing and regulatory systems employed by bacterial pathogens to mount the proper response to counteract the toxic effects of copper allowing survival and replication inside the host.

Keywords

Copper homeostasis Copper function and toxicity Bacterial pathogenesis Innate immune response Salmonella Mycobacterium 

References

  1. 1.
    Rensing C, Grass G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213Google Scholar
  2. 2.
    Kim EH, Rensing C, McEvoy MM (2010) Chaperone-mediated copper handling in the periplasm. Nat Prod Rep 27:711–719Google Scholar
  3. 3.
    Achard ME et al (2010) The multi-copper-ion oxidase CueO of Salmonella enterica serovar Typhimurium is required for systemic virulence. Infect Immun 78:2312–2319Google Scholar
  4. 4.
    Rowland JL, Niederweis M (2012) Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. Tuberculosis (Edinb) 92:202–210Google Scholar
  5. 5.
    MacPherson IS, Murphy ME (2007) Type-2 copper-containing enzymes. Cell Mol Life Sci 64:2887–2899Google Scholar
  6. 6.
    Rosenzweig AC, Sazinsky MH (2006) Structural insights into dioxygen-activating copper enzymes. Curr Opin Struct Biol 16:729–735Google Scholar
  7. 7.
    Choi M, Davidson VL (2011) Cupredoxins–a study of how proteins may evolve to use metals for bioenergetic processes. Metallomics 3:140–151Google Scholar
  8. 8.
    Eskici G, Axelsen PH (2012) Copper and oxidative stress in the pathogenesis of Alzheimer’s disease. Biochemistry 51:6289–6311Google Scholar
  9. 9.
    Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104Google Scholar
  10. 10.
    Lalioti V, Muruais G, Tsuchiya Y, Pulido D, Sandoval IV (2009) Molecular mechanisms of copper homeostasis Front Biosci (Landmark. Ed) 14:4878–4903Google Scholar
  11. 11.
    Rubino JT, Franz KJ (2012) Coordination chemistry of copper proteins: how nature handles a toxic cargo for essential function. J Inorg Biochem 107:129–143Google Scholar
  12. 12.
    Liochev SI, Fridovich I (2002) The Haber-Weiss cycle—70 years later: an alternative view. Redox Rep 7:55–57Google Scholar
  13. 13.
    Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 106:8344–8349Google Scholar
  14. 14.
    Fung DK, Lau WY, Chan WT, Yan A (2013) Copper efflux is induced during anaerobic amino acid limitation in Escherichia coli to protect iron-sulfur cluster enzymes and biogenesis. J Bacteriol 195:4556–4568Google Scholar
  15. 15.
    Rensing C, McDevitt SF (2013) The copper metallome in prokaryotic cells. Met Ions Life Sci 12:417–450Google Scholar
  16. 16.
    Decaria L, Bertini I, Williams RJ (2011) Copper proteomes, phylogenetics and evolution. Metallomics 3:56–60Google Scholar
  17. 17.
    Cha JS, Cooksey DA (1993) Copper hypersensitivity and uptake in pseudomonas syringae containing cloned components of the copper resistance operon. Appl Environ Microbiol 59:1671–1674Google Scholar
  18. 18.
    Chillappagari S, Miethke M, Trip H, Kuipers OP, Marahiel MA (2009) Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR in Bacillus subtilis. J Bacteriol 191:2362–2370Google Scholar
  19. 19.
    Ekici S, Yang H, Koch HG, Daldal F (2012) Novel transporter required for biogenesis of cbb3-type cytochrome c oxidase in Rhodobacter capsulatus. MBio 3Google Scholar
  20. 20.
    Mermod M, Magnani D, Solioz M, Stoyanov JV (2012) The copper-inducible ComR (YcfQ) repressor regulates expression of ComC (YcfR), which affects copper permeability of the outer membrane of Escherichia coli. Biometals 25:33–43Google Scholar
  21. 21.
    Grass G et al (2005) The metal permease ZupT from Escherichia coli is a transporter with a broad substrate spectrum. J Bacteriol 187:1604–1611Google Scholar
  22. 22.
    Janulczyk R, Pallon J, Bjorck L (1999) Identification and characterization of a Streptococcus pyogenes ABC transporter with multiple specificity for metal cations. Mol Microbiol 34:596–606Google Scholar
  23. 23.
    Lewinson O, Lee AT, Rees DC (2009) A P-type ATPase importer that discriminates between essential and toxic transition metals. Proc Natl Acad Sci USA 106:4677–4682Google Scholar
  24. 24.
    Kenney GE, Rosenzweig AC (2012) Chemistry and biology of the copper chelator methanobactin. ACS Chem Biol 7:260–268Google Scholar
  25. 25.
    Singleton C, Le Brun NE (2007) Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer. Biometals 20:275–289Google Scholar
  26. 26.
    Gonzalez-Guerrero M, Hong D, Arguello JM (2009) Chaperone-mediated Cu+ delivery to Cu+ transport ATPases: requirement of nucleotide binding. J Biol Chem 284:20804–20811Google Scholar
  27. 27.
    Banci L, Bertini I, McGreevy KS, Rosato A (2010) Molecular recognition in copper trafficking. Nat Prod Rep 27:695–710Google Scholar
  28. 28.
    Tottey S, Rondet SA, Borrelly GP, Robinson PJ, Rich PR, Robinson NJ (2002) A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition. J Biol Chem 277:5490–5497Google Scholar
  29. 29.
    Fu Y et al (2013) A new structural paradigm in copper resistance in Streptococcus pneumoniae. Nat Chem Biol 9:177–183Google Scholar
  30. 30.
    Xue Y et al (2008) Cu(I) recognition via cation-pi and methionine interactions in CusF. Nat Chem Biol 4:107–109Google Scholar
  31. 31.
    Loftin IR et al (2005) A novel copper-binding fold for the periplasmic copper resistance protein CusF. Biochemistry 44:10533–10540Google Scholar
  32. 32.
    Mealman TD et al (2012) N-terminal region of CusB is sufficient for metal binding and metal transfer with the metallochaperone CusF. Biochemistry 51:6767–6775Google Scholar
  33. 33.
    Thompson AK, Gray J, Liu A, Hosler JP (2012) The roles of Rhodobacter sphaeroides copper chaperones PCu(A)C and Sco (PrrC) in the assembly of the copper centers of the aa(3)-type and the cbb(3)-type cytochrome c oxidases. Biochim Biophys Acta 1817:955–964Google Scholar
  34. 34.
    Balatri E, Banci L, Bertini I, Cantini F, Ciofi-Baffoni S (2003) Solution structure of Sco1: a thioredoxin-like protein Involved in cytochrome c oxidase assembly. Structure 11:1431–1443Google Scholar
  35. 35.
    Osman D et al (2013) The copper supply pathway to a Salmonella Cu, Zn-superoxide dismutase (SodCII) involves P(1B)-type ATPase copper efflux and periplasmic CueP. Mol Microbiol 87:466–477Google Scholar
  36. 36.
    Yoon BY et al (2013) Structure of the periplasmic copper-binding protein CueP from Salmonella enterica serovar Typhimurium. Acta Crystallogr D Biol Crystallogr 69:1867–1875Google Scholar
  37. 37.
    Rosenzweig AC, Arguello JM (2012) Toward a molecular understanding of metal transport by P(1B)-type ATPase. Curr Top Membr 69:113–136Google Scholar
  38. 38.
    Padilla-Benavides T, McCann CJ, Arguello JM (2013) The mechanism of Cu+ transport ATPases: interaction with CU+ chaperones and the role of transient metal-binding sites. J Biol Chem 288:69–78Google Scholar
  39. 39.
    Raimunda D, Gonzalez-Guerrero M, Leeber BW III, Arguello JM (2011) The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Biometals 24:467–475Google Scholar
  40. 40.
    Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812Google Scholar
  41. 41.
    Mealman TD, Blackburn NJ, McEvoy MM (2012) Metal export by CusCFBA, the periplasmic Cu(I)/Ag(I) transport system of Escherichia coli. Curr Top Membr 69:163–196Google Scholar
  42. 42.
    Su CC, Long F, Zimmermann MT, Rajashankar KR, Jernigan RL, Yu EW (2011) Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli. Nature 470:558–562Google Scholar
  43. 43.
    Pontel LB, Soncini FC (2009) Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Mol Microbiol 73:212–225Google Scholar
  44. 44.
    Grass G, Rensing C (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 286:902–908Google Scholar
  45. 45.
    Roberts SA et al (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci USA 99:2766–2771Google Scholar
  46. 46.
    Singh SK, Grass G, Rensing C, Montfort WR (2004) Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol 186:7815–7817Google Scholar
  47. 47.
    Kim C, Lorenz WW, Hoopes JT, Dean JF (2001) Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J Bacteriol 183:4866–4875Google Scholar
  48. 48.
    Grass G et al (2004) Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli. J Bacteriol 186:5826–5833Google Scholar
  49. 49.
    Espariz M, Checa SK, Audero ME, Pontel LB, Soncini FC (2007) Dissecting the Salmonella response to copper. Microbiology 153:2989–2997Google Scholar
  50. 50.
    Gold B et al (2008) Identification of a copper-binding metallothionein in pathogenic Mycobacteria. Nat Chem Biol 4:609–616Google Scholar
  51. 51.
    Potter AJ, Trappetti C, Paton JC (2012) Streptococcus pneumoniae uses glutathione to defend against oxidative stress and metal ion toxicity. J Bacteriol 194:6248–6254Google Scholar
  52. 52.
    Remonsellez F, Orell A, Jerez CA (2006) Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiology 152:59–66Google Scholar
  53. 53.
    Reyes-Caballero H, Campanello GC, Giedroc DP (2011) Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys Chem 156:103–114Google Scholar
  54. 54.
    Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163Google Scholar
  55. 55.
    Humbert MV, Rasia RM, Checa SK, Soncini FC (2013) Protein signatures that promote operator selectivity among paralog MerR monovalent metal ion regulators. J Biol Chem 288:20510–20519Google Scholar
  56. 56.
    Changela A et al (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387Google Scholar
  57. 57.
    Ibanez MM, Cerminati S, Checa SK, Soncini FC (2013) Dissecting the metal selectivity of MerR monovalent metal ion sensors in Salmonella. J Bacteriol 195:3084–3092Google Scholar
  58. 58.
    Perez Audero ME, Podoroska BM, Ibanez MM, Cauerhff A, Checa SK, Soncini FC (2010) Target transcription binding sites differentiate two groups of MerR-monovalent metal ion sensors. Mol Microbiol 78:853–865Google Scholar
  59. 59.
    Stoyanov JV, Hobman JL, Brown NL (2001) CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–511Google Scholar
  60. 60.
    Outten FW, Outten CE, Hale J, O’Halloran TV (2000) Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. J Biol Chem 275:31024–31029Google Scholar
  61. 61.
    Magnani D, Barre O, Gerber SD, Solioz M (2008) Characterization of the CopR regulon of Lactococcus lactis IL1403. J Bacteriol 190:536–545Google Scholar
  62. 62.
    Portmann R, Poulsen KR, Wimmer R, Solioz M (2006) CopY-like copper inducible repressors are putative ‘winged helix’ proteins. Biometals 19:61–70Google Scholar
  63. 63.
    Shafeeq S et al (2011) The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol Microbiol 81:1255–1270Google Scholar
  64. 64.
    Smaldone GT, Helmann JD (2007) CsoR regulates the copper efflux operon copZA in Bacillus subtilis. Microbiology 153:4123–4128Google Scholar
  65. 65.
    Cantini F, Banci L, Solioz M (2009) The copper-responsive repressor CopR of Lactococcus lactis is a ‘winged helix’ protein. Biochem J 417:493–499Google Scholar
  66. 66.
    Cobine P, Wickramasinghe WA, Harrison MD, Weber T, Solioz M, Dameron CT (1999) The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445:27–30Google Scholar
  67. 67.
    Teramoto H, Inui M, Yukawa H (2012) Corynebacterium glutamicum CsoR acts as a transcriptional repressor of two copper/zinc-inducible P(1B)-type ATPase operons. Biosci Biotechnol Biochem 76:1952–1958Google Scholar
  68. 68.
    Liu T et al (2007) CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol 3:60–68Google Scholar
  69. 69.
    Grossoehme N et al (2011) Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus. J Biol Chem 286:13522–13531Google Scholar
  70. 70.
    Corbett D, Schuler S, Glenn S, Andrew PW, Cavet JS, Roberts IS (2011) The combined actions of the copper-responsive repressor CsoR and copper-metallochaperone CopZ modulate CopA-mediated copper efflux in the intracellular pathogen Listeria monocytogenes. Mol Microbiol 81:457–472Google Scholar
  71. 71.
    Ma Z, Cowart DM, Scott RA, Giedroc DP (2009) Molecular insights into the metal selectivity of the copper(I)-sensing repressor CsoR from Bacillus subtilis. Biochemistry 48:3325–3334Google Scholar
  72. 72.
    Liu T et al (2008) A Cu(I)-sensing ArsR family metal sensor protein with a relaxed metal selectivity profile. Biochemistry 47:10564–10575Google Scholar
  73. 73.
    Brown NL, Barrett SR, Camakaris J, Lee BT, Rouch DA (1995) Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17:1153–1166Google Scholar
  74. 74.
    Mills SD, Jasalavich CA, Cooksey DA (1993) A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. J Bacteriol 175:1656–1664Google Scholar
  75. 75.
    Munson GP, Lam DL, Outten FW, O’Halloran TV (2000) Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 182:5864–5871Google Scholar
  76. 76.
    Smith LM, May RC (2013) Mechanisms of microbial escape from phagocyte killing. Biochem Soc Trans 41:475–490Google Scholar
  77. 77.
    Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848Google Scholar
  78. 78.
    Shiloh MU, Nathan CF (2000) Reactive nitrogen intermediates and the pathogenesis of Salmonella and mycobacteria. Curr Opin Microbiol 3:35–42Google Scholar
  79. 79.
    White C et al (2009) Copper transport into the secretory pathway is regulated by oxygen in macrophages. J Cell Sci 122:1315–1321Google Scholar
  80. 80.
    Wolschendorf F et al (2011) Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 108:1621–1626Google Scholar
  81. 81.
    Zhou B, Gitschier J (1997) hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci USA 94:7481–7486Google Scholar
  82. 82.
    Hamza I, Prohaska J, Gitlin JD (2003) Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc Natl Acad Sci USA 100:1215–1220Google Scholar
  83. 83.
    Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 15:6084–6095Google Scholar
  84. 84.
    White C, Lee J, Kambe T, Fritsche K, Petris MJ (2009) A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem 284:33949–33956Google Scholar
  85. 85.
    Samanovic MI, Ding C, Thiele DJ, Darwin KH (2012) Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe 11:106–115Google Scholar
  86. 86.
    Baumler AJ, Winter SE, Thiennimitr P, Casadesus J (2011) Intestinal and chronic infections: Salmonella lifestyles in hostile environments. Environ Microbiol Rep 3:508–517Google Scholar
  87. 87.
    Kim JS, Kim MH, Joe MH, Song SS, Lee IS, Choi SY (2002) The sctR of Salmonella enterica serova Typhimurium encoding a homologue of MerR protein is involved in the copper-responsive regulation of cuiD. FEMS Microbiol Lett 210:99–103Google Scholar
  88. 88.
    Outten FW, Huffman DL, Hale JA, O’Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677Google Scholar
  89. 89.
    Osman D et al (2010) Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex. J Biol Chem 285:25259–25268Google Scholar
  90. 90.
    Heithoff DM, Conner CP, Hanna PC, Julio SM, Hentschel U, Mahan MJ (1997) Bacterial infection as assessed by in vivo gene expression. Proc Natl Acad Sci USA 94:934–939Google Scholar
  91. 91.
    Huang ZL, Failla ML (2000) Copper deficiency suppresses effector activities of differentiated U937 cells. J Nutr 130:1536–1542Google Scholar
  92. 92.
    Achard ME et al (2012) Copper redistribution in murine macrophages in response to Salmonella infection. Biochem J 444:51–57Google Scholar
  93. 93.
    Tree JJ, Ulett GC, Ong CL, Trott DJ, McEwan AG, Schembri MA (2008) Trade-off between iron uptake and protection against oxidative stress: deletion of cueO promotes uropathogenic Escherichia coli virulence in a mouse model of urinary tract infection. J Bacteriol 190:6909–6912Google Scholar
  94. 94.
    Pontel LB, Pezza A, Soncini FC (2010) Copper stress targets the rcs system to induce multiaggregative behavior in a copper-sensitive Salmonella strain. J Bacteriol 192:6287–6290Google Scholar
  95. 95.
    Gonzalez AG et al (2010) Adsorption of copper on Pseudomonas aureofaciens: protective role of surface exopolysaccharides. J Colloid Interface Sci 350:305–314Google Scholar
  96. 96.
    Yadav KK, Mandal AK, Chakraborty R (2013) Copper susceptibility in Acinetobacter junii BB1A is related to the production of extracellular polymeric substances. Antonie Van Leeuwenhoek 104:261–269Google Scholar
  97. 97.
    Gupta SD, Wu HC, Rick PD (1997) A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli. J Bacteriol 179:4977–4984Google Scholar
  98. 98.
    Anwar N, Sem XH, Rhen M (2013) Oxidoreductases that act as conditional virulence suppressors in Salmonella enterica serovar Typhimurium. PLoS One 8:e64948Google Scholar
  99. 99.
    Uzzau S, Bossi L, Figueroa-Bossi N (2002) Differential accumulation of Salmonella[Cu, Zn] superoxide dismutases SodCI and SodCII in intracellular bacteria: correlation with their relative contribution to pathogenicity. Mol Microbiol 46:147–156Google Scholar
  100. 100.
    De Groote MA et al (1997) Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci USA 94:13997–14001Google Scholar
  101. 101.
    Ammendola S et al (2008) Regulatory and structural differences in the Cu, Zn-superoxide dismutases of Salmonella enterica and their significance for virulence. J Biol Chem 283:13688–13699Google Scholar
  102. 102.
    Repasy T et al (2013) Intracellular bacillary burden reflects a burst size for Mycobacterium tuberculosis in vivo. PLoS Pathog 9:e1003190Google Scholar
  103. 103.
    Hunter,R.L. (2011) Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis. (Edinb.) 91:497–509Google Scholar
  104. 104.
    Flannagan RS, Cosio G, Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7:355–366Google Scholar
  105. 105.
    Wagner D, Maser J, Moric I, Vogt S, Kern WV, Bermudez LE (2006) Elemental analysis of the Mycobacterium avium phagosome in Balb/c mouse macrophages. Biochem Biophys Res Commun 344:1346–1351Google Scholar
  106. 106.
    Ward SK, Abomoelak B, Hoye EA, Steinberg H, Talaat AM (2010) CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis. Mol Microbiol 77:1096–1110Google Scholar
  107. 107.
    Festa RA et al (2011) A novel copper-responsive regulon in Mycobacterium tuberculosis. Mol Microbiol 79:133–148Google Scholar
  108. 108.
    Schwan WR, Warrener P, Keunz E, Stover CK, Folger KR (2005) Mutations in the cueA gene encoding a copper homeostasis P-type ATPase reduce the pathogenicity of Pseudomonas aeruginosa in mice. Int J Med Microbiol 295:237–242Google Scholar
  109. 109.
    Zhang XX, Rainey PB (2007) The role of a P1-type ATPase from Pseudomonas fluorescens SBW25 in copper homeostasis and plant colonization. Mol Plant Microbe Interact 20:581–588Google Scholar
  110. 110.
    Rankin S, Li Z, Isberg RR (2002) Macrophage-induced genes of Legionella pneumophila: protection from reactive intermediates and solute imbalance during intracellular growth. Infect Immun 70:3637–3648Google Scholar
  111. 111.
    Francis MS, Thomas CJ (1997) Mutants in the CtpA copper transporting P-type ATPase reduce virulence of Listeria monocytogenes. Microb Pathog 22:67–78Google Scholar
  112. 112.
    Renier S, Micheau P, Talon R, Hebraud M, Desvaux M (2012) Subcellular localization of extracytoplasmic proteins in monoderm bacteria: rational secretomics-based strategy for genomic and proteomic analyses. PLoS One 7:e42982Google Scholar
  113. 113.
    Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12:2163–2175Google Scholar
  114. 114.
    Munoz C, Rios E, Olivos J, Brunser O, Olivares M (2007) Iron, copper and immunocompetence. Br J Nutr 98(Suppl 1):S24–S28Google Scholar
  115. 115.
    Speer A et al (2013) Copper-boosting compounds: a novel concept for antimycobacterial drug discovery. Antimicrob Agents Chemother 57:1089–1091Google Scholar
  116. 116.
    Wadhwa S, Mumper RJ (2013) d-penicillamine and other low molecular weight thiols: review of anticancer effects and related mechanisms. Cancer Lett 337:8–21Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lucas B. Pontel
    • 1
    • 2
  • Susana K. Checa
    • 1
  • Fernando C. Soncini
    • 1
  1. 1.Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y TécnicasRosarioArgentina
  2. 2.MRC Laboratory of Molecular BiologyCambridgeUK

Personalised recommendations