Skip to main content

Adaptive Tunning of All Parameters in a Multi-Swarm Particle Swarm Optimization Algorithm: An Application to the Probabilistic Traveling Salesman Problem

  • Conference paper

Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS,volume 130)

Abstract

One of the main issues in the application of a particle swarm optimization (PSO) algorithm and of every evolutionary optimization algorithm is the finding of the suitable parameters of the algorithm. Usually, a trial and error procedure is used but, also, a number of different procedures have been applied in the past. In this chapter, we use a new adaptive version of a PSO algorithm where random values are assigned in the initialization of the algorithm and, then, during the iterations the parameters are optimized together and simultaneously with the optimization of the objective function of the problem. This idea is used for the solution of the probabilistic traveling salesman problem (PTSP). The algorithm is tested on a number of benchmark instances and it is compared with a number of algorithms from the literature.

Keywords

  • Particle swarm optimization
  • Variable neighborhood search
  • Probabilistic traveling salesman problem

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-18567-5_10
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-18567-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.00
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

References

  1. Bahmani-Firouzi, B., Farjah, E., Azizipanah-Abarghooee, R.: An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties. Energy 50, 232–244 (2013)

    CrossRef  Google Scholar 

  2. Balaprakash, P., Birattari, M., Stutzle, T., Yuan, Z., Dorigo, M.: Estimation-based ant colony optimization and local search for the probabilistic traveling salesman problem. Swarm Intell. 3, 223–242 (2009)

    CrossRef  Google Scholar 

  3. Bertsimas, D.J.: Probabilistic combinatorial optimization problems. Ph.D. thesis, MIT, Cambridge (1988)

    Google Scholar 

  4. Bianchi, L.: Ant colony optimization and local search for the probabilistic traveling salesman problem: a case study in stochastic combinatorial optimization. Ph.D. thesis, Universite Libre de Bruxelles, Belgium (2006)

    Google Scholar 

  5. Branke, J., Guntsch, M.: Solving the probabilistic TSP with ant colony optimization. J. Math. Model. Algorithms 3(4), 403–425 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Chen, D.B., Zhao, C.X.: Particle swarm optimization with adaptive population size and its application. Appl. Soft Comput. 9, 39–48 (2009)

    CrossRef  Google Scholar 

  7. Clerc, M.: Particle Swarm Optimization. Wiley-ISTE, London (2006)

    CrossRef  MATH  Google Scholar 

  8. Clerc, M., Kennedy, J.: The particle swarm: explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    CrossRef  Google Scholar 

  9. Cooren, Y., Clerc, M., Siarry, P.: Initialization and displacement of the particles in TRIBES, a parameter-free particle swarm optimization algorithm. In: Cotta, C., et al. (eds.) Adaptive and Multilevel Metaheuristics, SCI, vol. 136, pp. 199–219. Springer, Berlin/Heidelberg (2008)

    CrossRef  Google Scholar 

  10. Cooren, Y., Clerc, M., Siarry, P.: Performance evaluation of TRIBES, an adaptive particle swarm optimization algorithm. Swarm Intell. 3, 149–178 (2009)

    CrossRef  Google Scholar 

  11. Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., Paredesm, F.: Parameter tuning of a choice-function based hyperheuristic using particle swarm optimization. Expert Syst. Appl. 40, 1690–1695

    Google Scholar 

  12. Eslami, M., Shareef, H., Taha, M.R., Khajehzadeh, M.: Adaptive particle swarm optimization for simultaneous design of UPFC damping controllers. Electr. Power Energy Syst. 57, 116–128 (2014)

    CrossRef  Google Scholar 

  13. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedure. J. Global Optim. 6, 109–133 (1995)

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. Glover, F.: Tabu search I. ORSA J. Comput. 1(3), 190–206 (1989)

    CrossRef  MATH  Google Scholar 

  15. Glover, F.: Tabu search II. ORSA J. Comput. 2(1), 4–32 (1990)

    CrossRef  MATH  Google Scholar 

  16. Glover, F., Laguna, M., Marti, R.: Scatter search and path relinking: advances and applications. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 1–36. Kluwer Academic Publishers, Boston (2003)

    Google Scholar 

  17. Han, F., Ling, Q.H.: A new approach for function approximation incorporating adaptive particle swarm optimization and a priori information. Appl. Math. Comput. 205, 792–798 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. Hansen, P., Mladenovic, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. Hasanzadeh, M., Meybodi, M.R., Ebadzadeh, M.M.: Adaptive cooperative particle swarm optimizer. Appl. Intell. 39, 397–420 (2013)

    CrossRef  Google Scholar 

  20. Hashemi, A.B., Meybodi, M.R.: Adaptive parameter selection scheme for PSO: a learning automata approach. In: Proceedings of the 14th International CSI Computer Conference (CSICC’09), IEEE, pp. 403–411 (2009)

    Google Scholar 

  21. Hashemi, A.B., Meybodi, M.R.: A note on the learning automata based algorithms for adaptive parameter selection in PSO. Appl. Soft Comput. 11, 689–705 (2011)

    CrossRef  Google Scholar 

  22. Ismail, A., Engelbrecht, A.P.: Self-adaptive particle swarm optimization. In: Bui, L.T., et al. (eds.) SEAL 2012. Lecture Notes in Computer Science, vol. 7673, pp. 228–237 (2012)

    CrossRef  Google Scholar 

  23. Ismail, A., Engelbrecht, A.P.: The self-adaptive comprehensive learning particle swarm optimizer. In: Dorigo, M., et al. (eds.) ANTS 2012. Lecture Notes in Computer Science, vol. 7461, pp. 156–167 (2012)

    CrossRef  Google Scholar 

  24. Jaillet, P.: Probabilistic traveling salesman problems. Ph.D. thesis, MIT, Cambridge (1985)

    Google Scholar 

  25. Jaillet, P.: A priori solution of a traveling salesman problem in which a random subset of the customers are visited. Oper. Res. 36(6), 929–936 (1988)

    MathSciNet  CrossRef  MATH  Google Scholar 

  26. Jiang, Y., Li, X., Huang, C.: Automatic calibration a hydrological model using a masterslave swarms shuffling evolution algorithm based on self-adaptive particle swarm optimization. Expert Syst. Appl. 40, 752–757 (2013)

    CrossRef  Google Scholar 

  27. Jiang, B., Wang, N., Wang, L.: Particle swarm optimization with age-group topology for multimodal functions and data clustering. Commun. Nonlinear Sci. Numer. Simul. 18, 3134–3145 (2013)

    MathSciNet  CrossRef  Google Scholar 

  28. Juang, Y.T., Tung, S.L., Chiu, H.C.: Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions. Inform. Sci. 181, 4539–4549 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  29. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  30. Leu, M.S., Yeh, M.F.: Grey particle swarm optimization. Appl. Soft Comput. 12, 2985–2996 (2012)

    CrossRef  Google Scholar 

  31. Leu, M.S., Yeh, M.F., Wang, S.C.: Particle swarm optimization with grey evolutionary analysis. Appl. Soft Comput. 12, 4047–4062 (2012)

    CrossRef  Google Scholar 

  32. Li, X.L., Li, L.H., Zhang, B.L., Guo, Q.J.: Hybrid self-adaptive learning based particle swarm optimization and support vector regression model for grade estimation. Neurocomputing 118, 179–190 (2013)

    CrossRef  Google Scholar 

  33. Lichtblau, D.: Discrete optimization using Mathematica. In: Callaos, N., Ebisuzaki, T., Starr, B., Abe, J.M., Lichtblau, D. (eds.) World Multi-Conference on Systemics, Cybernetics and Informatics (SCI 2002). International Institute of Informatics and Systemics, vol. 16, pp. 169–174 (2002)

    Google Scholar 

  34. Liu, Y.-H.: A hybrid scatter search for the probabilistic traveling salesman problem. Comput. Oper. Res. 34(10), 2949–2963 (2007)

    CrossRef  MATH  Google Scholar 

  35. Liu, Y.-H.: Different initial solution generators in genetic algorithms for solving the probabilistic traveling salesman problem. Appl. Math. Comput. 216, 125–137 (2010)

    MathSciNet  CrossRef  MATH  Google Scholar 

  36. Lu, H. Chen, W.: Self-adaptive velocity particle swarm optimization for solving constrained optimization problems. J. Glob. Optim. 41, 427–445 (2008)

    CrossRef  MATH  Google Scholar 

  37. Marinakis, Y., Marinaki, M.: A hybrid honey bees mating optimization algorithm for the probabilistic traveling salesman problem. In: IEEE Congress on Evolutionary Computation (CEC 2009), 18–21 May, Trondheim (2009)

    Google Scholar 

  38. Marinakis, Y., Marinaki, M.: A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem. Comput. Oper. Res. 37, 432–442 (2010)

    MathSciNet  CrossRef  MATH  Google Scholar 

  39. Marinakis, Y., Marinaki, M.: Particle swarm optimization with expanding neighborhood topology for the permutation flowshop scheduling problem. Soft Comput. 17(7), 1159–1173 (2013)

    CrossRef  Google Scholar 

  40. Marinakis, Y., Migdalas, A., Pardalos, P.M.: Expanding neighborhood search GRASP for the probabilistic traveling salesman problem. Optim. Lett. 2(3), 351–361 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  41. Marinakis, Y., Marinaki, M., Dounias, G.: A hybrid particle swarm optimization algorithm for the vehicle routing problem. Eng. Appl. Artif. Intell. 23, 463–472 (2010)

    CrossRef  Google Scholar 

  42. Modares, H., Alfi, A., Naghibi Sistani, M.B.: Parameter estimation of bilinear systems based on an adaptive particle swarm optimization. Eng. Appl. Artif. Intell. 23, 1105–1111 (2010)

    CrossRef  Google Scholar 

  43. Neshat, M.: FAIPSO: fuzzy adaptive informed particle swarm optimization. Neural Comput. Appl. 23(1 Suppl.), 95–116 (2013)

    CrossRef  Google Scholar 

  44. Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Appl. Soft Comput. 11, 3658–3670 (2011)

    CrossRef  Google Scholar 

  45. Niknam, T.: A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem. Appl. Energy 87, 327–339 (2010)

    CrossRef  Google Scholar 

  46. Niknam, T., Farsani, E.A.: A hybrid self-adaptive particle swarm optimization and modified shuffled frog leaping algorithm for distribution feeder reconfiguration. Eng. Appl. Artif. Intell. 23, 1340–1349 (2010)

    CrossRef  Google Scholar 

  47. Niknam, T., Doagou Mojarrad, H., Nayeripour, M.: A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch. Energy 35, 1764–1778 (2010)

    CrossRef  Google Scholar 

  48. Onwubolu, G.C.: TRIBES application to the flow shop scheduling problem. In: Onwubolu, G.C., et al. (eds.) New Optimization Techniques in Engineering, pp. 517–536. Springer, Berlin/Heidelberg (2004)

    CrossRef  Google Scholar 

  49. Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and dynamic networks and routing. In: Ball M.O., Magnanti T.L., Momma C.L., Nemhauser G.L. (eds.) Network Routing, Handbooks in Operations Research and Management Science, vol. 8, pp. 141–295. Elsevier Science B. V., Amsterdam (1995)

    Google Scholar 

  50. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)

    CrossRef  Google Scholar 

  51. Senthil Arumugam, M., Rao, M.V.C.: On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Appl. Soft Comput. 8, 324–336 (2008)

    CrossRef  Google Scholar 

  52. Song, Y.D., Zhang, L., Han, P.: An adaptive tribe-particle swarm optimization. In: Tan, Y., et al. (eds.) ICSI 2011, Part I. Lecture Notes in Computer Science, vol. 6728, pp. 86–92 (2011)

    CrossRef  Google Scholar 

  53. Tripathi, P.K., Bandyopadhyay, S., Pal, S.K.: Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf. Sci. 177, 5033–5049 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  54. Wang, J.: Particle swarm optimization with adaptive parameter control and opposition. J. Comput. Inf. Syst. 7(12), 4463–4470 (2011)

    Google Scholar 

  55. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based particle swarm optimization. Inf. Sci. 181, 4515–4538 (2011)

    CrossRef  MATH  Google Scholar 

  56. Wang, J., Lu, H., Dong, Y., Chi, D.: The model of chaotic sequences based on adaptive particle swarm optimization arithmetic combined with seasonal term. Appl. Math. Model. 36, 1184–1196 (2012)

    MathSciNet  CrossRef  MATH  Google Scholar 

  57. Wang, Y., Zhou, J., Zhou, C., Wang, Y., Qin, H., Lu, Y.: An improved self-adaptive PSO technique for short-term hydrothermal scheduling. Expert Syst. Appl. 39, 2288–2295 (2012)

    CrossRef  Google Scholar 

  58. Xu, G.: An adaptive parameter tuning of particle swarm optimization algorithm. Appl. Math. Comput. 219, 4560–4569 (2013)

    MathSciNet  CrossRef  Google Scholar 

  59. Zhan, Z.H., Zhang, J., Li, Y., Chung, H.S.H.: Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. B Cybern. 39(6), 1362–1381 (2009)

    CrossRef  Google Scholar 

  60. Zhang, J., Ding, X.: A multi-swarm self-adaptive and cooperative particle swarm optimization. Eng. Appl. Artif. Intell. 24, 958–967 (2011)

    MathSciNet  CrossRef  Google Scholar 

  61. Zhang, W., Liu, Y.: Adaptive particle swarm optimization for reactive power and voltage control in power systems. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. Lecture Notes in Computer Science, vol. 3612, pp. 449–452 (2005)

    CrossRef  Google Scholar 

  62. Zhang, L., Mei, T., Liu, Y., Tao, D., Zhou, H.Q.: Visual search reranking via adaptive particle swarm optimization. Pattern Recogn. 44, 1811–1820 (2011)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Marinakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Marinakis, Y., Marinaki, M., Migdalas, A. (2015). Adaptive Tunning of All Parameters in a Multi-Swarm Particle Swarm Optimization Algorithm: An Application to the Probabilistic Traveling Salesman Problem. In: Migdalas, A., Karakitsiou, A. (eds) Optimization, Control, and Applications in the Information Age. Springer Proceedings in Mathematics & Statistics, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-319-18567-5_10

Download citation