Skip to main content

Relaxation and Prethermalization in One-Dimensional Bose Gases

  • Chapter
  • First Online:
Non-equilibrium Dynamics of One-Dimensional Bose Gases

Part of the book series: Springer Theses ((Springer Theses))

  • 812 Accesses

Abstract

The study of relaxation processes remains a challenge despite considerable theoretical and experimental efforts. In this chapter, we study such processes using a 1D Bose gas. The system is quenched by coherently splitting it into two parts. Matter-wave interferometry between the two parts is used to extract information about the dynamics. Measuring the full probability distributions of interference contrast reveals the prethermalization of the system to a non-thermal steady state, which can be characterized by an effective temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011)

    Article  ADS  Google Scholar 

  2. T. Kinoshita, T. Wenger, D. Weiss, A Quantum Newton’s Cradle. Nature 440, 900–903 (2006)

    Google Scholar 

  3. M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007)

    Article  ADS  Google Scholar 

  4. M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I.E. Mazets, D. Adu Smith, E. Demler, J. Schmiedmayer, Relaxation and prethermalization in an isolated quantum system. Science 337, 1318–1322 (2012)

    Google Scholar 

  5. D. Adu Smith, M. Gring, T. Langen, M. Kuhnert, B. Rauer, R. Geiger, T. Kitagawa, I. Mazets, E. Demler, J. Schmiedmayer, Prethermalization revealed by the relaxation dynamics of full distribution functions. New J. Phys. 15, 075011 (2013)

    Google Scholar 

  6. T. Langen, M. Gring, M. Kuhnert, B. Rauer, R. Geiger, D. Adu Smith, I.E. Mazets, J. Schmiedmayer, Prethermalization in one-dimensional Bose gases: description by a stochastic Ornstein-Uhlenbeck process. Eur. Phys. J. Spec. Top. 217, 43–53 (2013)

    Google Scholar 

  7. T. Langen, R. Geiger, M. Kuhnert, B. Rauer, J. Schmiedmayer, Local emergence of thermal correlations in an isolated quantum many-body system. Nat. Phys. 9, 640–643 (2013)

    Article  Google Scholar 

  8. T. Langen, M. Gring, M. Kuhnert, B. Rauer, R. Geiger, I. Mazets, D. Adu Smith, T. Kitagawa, E. Demler, J. Schmiedmayer, Studying non-equilibrium many-body dynamics using one-dimensional Bose gases. AIP Conf. Proc. 1633, 11 (2014) (2013)

    Google Scholar 

  9. M. Gring, Prethermalization in an isolated many-body system. Ph.D. thesis, Vienna University of Technology, 2012

    Google Scholar 

  10. M. Kuhnert, Thermalization and prethermalization in an ultracold Bose gas. Ph.D. thesis, Vienna University of Technology, 2013

    Google Scholar 

  11. T. Kitagawa, A. Imambekov, J. Schmiedmayer, E. Demler, The dynamics and prethermalization of one-dimensional quantum systems probed through the full distributions of quantum noise. New J. Phys. 13, 073018 (2011)

    Article  ADS  Google Scholar 

  12. R. Bistritzer, E. Altman, Intrinsic dephasing in one-dimensional ultracold atom interferometers. Proc. Natl. Acad. Sci. 104, 9955 (2007)

    Article  ADS  Google Scholar 

  13. T. Kitagawa, S. Pielawa, A. Imambekov, J. Schmiedmayer, V. Gritsev, E. Demler, Ramsey interference in one-dimensional systems: the full distribution function of fringe contrast as a probe of many-body dynamics. Phys. Rev. Lett. 104, 255302 (2010)

    Article  ADS  Google Scholar 

  14. T. Betz, S. Manz, R. Bücker, T. Berrada, C. Koller, G. Kazakov, I.E. Mazets, H.-P. Stimming, A. Perrin, T. Schumm, J. Schmiedmayer, Two-point phase correlations of a one-dimensional bosonic Josephson junction. Phys. Rev. Lett. 106, 020407 (2011)

    Google Scholar 

  15. M. Kuhnert, R. Geiger, T. Langen, M. Gring, B. Rauer, T. Kitagawa, E. Demler, D. Adu Smith, J. Schmiedmayer, Multimode dynamics and emergence of a characteristic length scale in a one-dimensional quantum system. Phys. Rev. Lett. 110, 090405 (2013)

    Google Scholar 

  16. K. Agarwal, E.G. Dalla Torre, B. Rauer, T. Langen, J. Schmiedmayer, E. Demler, Chiral prethermalization in supersonically split condensates. Phys. Rev. Lett. 113, 190401 (2014)

    Google Scholar 

  17. T. Schumm, S. Hofferberth, L.M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, P. Kruger, Matter-wave interferometry in a double well on an atom chip. Nat. Phys. 1, 57–62 (2005)

    Google Scholar 

  18. S. Hofferberth, I. Lesanovsky, T. Schumm, A. Imambekov, V. Gritsev, E. Demler, J. Schmiedmayer, Probing quantum and thermal noise in an interacting many-body system. Nat. Phys. 4, 489–495 (2008)

    Article  Google Scholar 

  19. C.-L. Hung, V. Gurarie, C. Chin, From cosmology to cold atoms: observation of Sakharov oscillations in a quenched atomic superfluid. Science 341, 1213–1215 (2013)

    Google Scholar 

  20. R. Geiger, T. Langen, I.E. Mazets, J. Schmiedmayer, Local relaxation and light-cone-like propagation of correlations in a trapped 1D Bose gas. New J. Phys. 16, 053034 (2014)

    Article  ADS  Google Scholar 

  21. V. Gritsev, E. Altman, E. Demler, A. Polkovnikov, Full quantum distribution of contrast in interference experiments between interacting one dimensional Bose liquids. Nat. Phys. 2, 705–709 (2006)

    Article  Google Scholar 

  22. J. Berges, Sz. Borsányi, C. Wetterich, Prethermalization. Phys. Rev. Lett. 93, 142002 (2004)

    Google Scholar 

  23. P. Braun-Munzinger, D. Magestro, K. Redlich, J. Stachel, Hadron production in Au-Au collisions at RHIC. Phys. Lett. B 518, 41–46 (2001)

    Google Scholar 

  24. D. Podolsky, G. Felder, L. Kofman, M. Peloso, Equation of state and beginning of thermalization after preheating. Phys. Rev. D 73, 023501 (2006)

    Article  ADS  Google Scholar 

  25. L. Kofman, A. Linde, A.A. Starobinsky, Reheating after inflation. Phys. Rev. Lett. 73, 3195–3198 (1994)

    Article  ADS  Google Scholar 

  26. A. Arrizabalaga, J. Smit, A. Tranberg, Equilibration in \(\varphi ^4\) theory in 3+ 1 dimensions. Phys. Rev. D 72, 025014 (2005)

    Article  ADS  Google Scholar 

  27. C. Kollath, A.M. Läuchli, E. Altman, Quench dynamics and nonequilibrium phase diagram of the Bose-hubbard model. Phys. Rev. Lett. 98, 180601 (2007)

    Article  ADS  Google Scholar 

  28. M. Eckstein, M. Kollar, P. Werner, Thermalization after an interaction quench in the Hubbard model. Phys. Rev. Lett. 103, 056403 (2009)

    Google Scholar 

  29. M. Moeckel, S. Kehrein, Crossover from adiabatic to sudden interaction quenches in the Hubbard model: prethermalization and non-equilibrium dynamics. New J. Phys. 12, 055016 (2010)

    Google Scholar 

  30. R. Barnett, A. Polkovnikov, M. Vengalattore, Prethermalization in quenched spinor condensates. Phys. Rev. A 84, 023606 (2011)

    Article  ADS  Google Scholar 

  31. G.E. Uhlenbeck, L.S. Ornstein, On the theory of the Brownian motion. Phys. Rev. 36, 823 (1930)

    Google Scholar 

  32. C.W. Gardiner, Handbook of stochastic methods (Springer, Berlin, 1985)

    Google Scholar 

  33. H.-P. Stimming, N.J. Mauser, J. Schmiedmayer, I.E. Mazets, Fluctuations and stochastic processes in one-dimensional many-body quantum systems. Phys. Rev. Lett. 105, 015301 (2010)

    Article  ADS  Google Scholar 

  34. C. Mora, Y. Castin, Extension of Bogoliubov theory to quasicondensates. Phys. Rev. A 67, 053615 (2003)

    Google Scholar 

  35. T. Giamarchi, Quantum physics in one dimension (Clarendon Press, Oxford, 2004)

    MATH  Google Scholar 

  36. N.K. Whitlock, I. Bouchoule, Relative phase fluctuations of two coupled one-dimensional condensates. Phys. Rev. A 68, 053609 (2003)

    Article  ADS  Google Scholar 

  37. M. Cramer, C.M. Dawson, J. Eisert, T.J. Osborne, Exact relaxation in a class of nonequilibrium quantum lattice systems. Phys. Rev. Lett. 100, 030602 (2008)

    Google Scholar 

  38. P. Calabrese, J. Cardy, Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 011368 (2006)

    Article  Google Scholar 

  39. L. Mathey, A. Polkovnikov, Light cone dynamics and reverse Kibble-Zurek mechanism in two-dimensional superfluids following a quantum quench. Phys. Rev. A 81, 60033 (2010)

    Google Scholar 

  40. M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, S. Kuhr, Light-cone-like spreading of correlations in a quantum many-body system. Nature 481, 484–487 (2012)

    Article  ADS  Google Scholar 

  41. D.T. Gillespie, Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys. Rev. E 54, 2084–2091 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Kollar, F.A. Wolf, M. Eckstein, Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems. Phys. Rev. B 84, 054304 (2011)

    Article  ADS  Google Scholar 

  43. M. Stark, M. Kollar, Kinetic description of thermalization dynamics in weakly interacting quantum systems. arXiv:1308.1610 (2013)

  44. I.E. Mazets, Private communication

    Google Scholar 

  45. I.E. Mazets, J. Schmiedmayer, Thermalization in a quasi-one-dimensional ultracold bosonic gas. New J. Phys. 12, 055023 (2010)

    Article  ADS  Google Scholar 

  46. H.-P. Stimming, N.J. Mauser, J. Schmiedmayer, I.E. Mazets, Dephasing in coherently split quasicondensates. Phys. Rev. A 83, 023618 (2011)

    Article  ADS  Google Scholar 

  47. A.A. Burkov, M.D. Lukin, E. Demler, Decoherence dynamics in low-dimensional cold atom interferometers. Phys. Rev. Lett. 98, 200404 (2007)

    Article  ADS  Google Scholar 

  48. S. Tan, M. Pustilnik, L.I. Glazman, Relaxation of a high-energy quasiparticle in a one-dimensional Bose gas. Phys. Rev. Lett. 105, 090404 (2010)

    Article  ADS  Google Scholar 

  49. I.E. Mazets, T. Schumm, J. Schmiedmayer, Breakdown of integrability in a quasi-1D ultracold bosonic gas. Phys. Rev. Lett. 100, 210403 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Langen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Langen, T. (2015). Relaxation and Prethermalization in One-Dimensional Bose Gases. In: Non-equilibrium Dynamics of One-Dimensional Bose Gases. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18564-4_4

Download citation

Publish with us

Policies and ethics