Skip to main content

Technology Assessment: Energy Efficiency Programs in Pacific Northwest

  • Chapter
Hierarchical Decision Modeling

Part of the book series: Innovation, Technology, and Knowledge Management ((ITKM))

  • 946 Accesses

Abstract

This chapter introduces a hierarchical decision modeling framework for energy efficiency program planning in electric utilities. The proposed approach focuses on assessment of emerging energy efficiency technologies and is proposed to bridge the gap between technology screening and cost/benefit evaluation practices. The proposed approach is expected to identify emerging technology alternatives, which have the highest potential to pass cost/benefit ratio testing procedures, and contribute to effectiveness of decision practices in energy efficiency program planning. Proposed framework also incorporates a sensitivity analysis for testing the robustness of decisions under varying scenarios in an attempt to enable more informed decision-making practices. Proposed framework was applied for the case of Northwest USA, and results of the case application and future research initiatives are presented.

A prior revision of this chapter was included in the conference proceedings of Portland International Conference on Management of Engineering and Technology, 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hobbs, B. F. (1995). Optimization methods for electric utility resource planning. European Journal of Operational Research, 83(1), 1–20.

    Article  Google Scholar 

  2. Neves, L. M. P., Martins, A. G., Antunes, C. H., & Dias, L. C. (2004). Using SSM to rethink the analysis of energy efficiency initiatives. Journal of the Operational Research Society, 55(9), 968–975.

    Article  Google Scholar 

  3. Hämäläinen, R. P. (1990). A decision aid in the public debate on nuclear power. European Journal of Operational Research, 48(1), 66–76.

    Article  Google Scholar 

  4. Zongxin, W., & Zhihong, W. (1997). Mitigation assessment results and priorities for China’s energy sector. Applied Energy, 56(3–4), 237–251.

    Article  Google Scholar 

  5. Mills, D., Vlacic, L., & Lowe, I. (1996). Improving electricity planning – Use of a multicriteria decision making model. International Transactions in Operational Research, 3(3–4), 293–304.

    Google Scholar 

  6. Rahman, S., & Frair, L. C. (1984). A hierarchical approach to electric utility planning. International Journal of Energy Research, 8(2), 185–196.

    Article  Google Scholar 

  7. Akash, B. A., Mamlook, R., & Mohsen, M. S. (1999). Multi-criteria selection of electric power plants using analytical hierarchy process. Electric Power Systems Research, 52(1), 29–35.

    Article  Google Scholar 

  8. Goumas, M. G., Lygerou, V. A., & Papayannakis, L. (1999). Computational methods for planning and evaluating geothermal energy projects. Energy Policy, 27(3), 147–154.

    Article  Google Scholar 

  9. Mamlook, R., Bilal, A. A., & Mousa, S. M. (2001). A neuro-fuzzy program approach for evaluating electric power generation systems. Energy, 26(6), 619–632.

    Article  Google Scholar 

  10. Mohsen, M. S., & Akash, B. A. (1997). Evaluation of domestic solar water heating system in Jordan using analytic hierarchy process. Energy Conversion and Management, 38(18), 1815–1822.

    Article  Google Scholar 

  11. Ramanathan, R. (1998). A multicriteria methodology for global negotiations on climate change. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 28(4), 541–548.

    Article  Google Scholar 

  12. Kagazyo, T., Kaneko, K., Akai, M., & Hijikata, K. (1997). Methodology and evaluation of priorities for energy and environmental research projects. Energy, 22(2–3), 121–129.

    Article  Google Scholar 

  13. Keeney, R. L., & Nair, K. (1977). Nuclear siting using decision analysis. Energy Policy, 5(3), 223–231.

    Article  Google Scholar 

  14. Keeney, R. L. (1987). An analysis of the portfolio of sites to characterize for selecting a nuclear repository. Risk Analysis, 7(2), 195–218.

    Article  Google Scholar 

  15. Hobbs, B. F., & Horn, G. T. F. (1997). Building public confidence in energy planning: A multimethod MCDM approach to demand-side planning at BC gas. Energy Policy, 25(3), 357–375.

    Article  Google Scholar 

  16. Keeney, R. L., & McDaniels, T. L. (1999). Identifying and structuring values to guide integrated resource planning at BC gas. Operations Research, 47(5), 651–662.

    Article  Google Scholar 

  17. Keeney, R. L., & Sicherman, A. (1983). Illustrative comparison of one utility’s coal and nuclear choices. Operations Research, 31(1), 50–83.

    Article  Google Scholar 

  18. Ramanathan, R., & Ganesh, L. S. (1995). Energy resource allocation incorporating qualitative and quantitative criteria: An integrated model using goal programming and AHP. Socio-Economic Planning Sciences, 29(3), 197–218.

    Article  Google Scholar 

  19. Lee, D. K., Park, S. Y., & Park, S. U. (2007). Development of assessment model for demand-side management investment programs in Korea. Energy Policy, 35(11), 5585–5590.

    Article  Google Scholar 

  20. Vashishtha, S., & Ramachandran, M. (2006). Multicriteria evaluation of demand side management (DSM) implementation strategies in the Indian power sector. Energy, 31(12), 2210–2225.

    Article  Google Scholar 

  21. Ramanathan, R., & Ganesh, L. S. (1995). Energy alternatives for lighting in households: An evaluation using an integrated goal programming-AHP model. Energy, 20(1), 63–72.

    Article  Google Scholar 

  22. Nagesha, N., & Balachandra, P. (2006). Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process. Energy, 31(12), 1969–1983.

    Article  Google Scholar 

  23. Hoog, D. T., & Hobbs, B. F. (1993). An integrated resource planning model considering customer value, emissions, and regional economic impacts. Energy, 18(11), 1153–1160.

    Article  Google Scholar 

  24. Keeney, R. L., & McDaniels, T. L. (1992). Value-focused thinking about strategic decisions at BC hydro. Interfaces, 22(6), 94–109.

    Article  Google Scholar 

  25. Dzene, I., Rošā, M., & Blumberga, D. (2011). How to select appropriate measures for reductions in negative environmental impact? Testing a screening method on a regional energy system. Energy, 36(4), 1878–1883.

    Article  Google Scholar 

  26. Reddy, B. S., & Parikh, J. K. (1997). Economic and environmental impacts of demand side management programmes. Energy Policy, 25(3), 349–356.

    Article  Google Scholar 

  27. Antunes, C. H., Martins, A. G., & Brito, I. S. (2004). A multiple objective mixed integer linear programming model for power generation expansion planning. Energy, 29(4), 613–627.

    Article  Google Scholar 

  28. Martins, A. G., Coelho, D., Antunes, C. H., & Climaco, J. (1996). A multiple objective linear programming approach to power generation planning with demand-side management (DSM). International Transactions in Operational Research, 3(3–4), 305–317.

    Article  Google Scholar 

  29. Garg, A., Maheshwari, J., Mahapatra, D., & Kumar, S. (2011). Economic and environmental implications of demand-side management options. Energy Policy, 39(6), 3076–3085.

    Article  Google Scholar 

  30. Gellings, C. W., & Smith, W. M. (1989). Integrating demand-side management into utility planning. Proceedings of the IEEE, 77(6), 908–918.

    Article  Google Scholar 

  31. Papagiannis, G., Dagoumas, A., Lettas, N., & Dokopoulos, P. (2008). Economic and environmental impacts from the implementation of an intelligent demand side management system at the European level. Energy Policy, 36(1), 163–180.

    Article  Google Scholar 

  32. Shrestha, R. M., & Marpaung, C. O. P. (1999). Supply- and demand-side effects of carbon tax in the Indonesian power sector: An integrated resource planning analysis. Energy Policy, 27(4), 185–194.

    Article  Google Scholar 

  33. Affonso, C. M., & da Silva, L. C. P. (2010). Potential benefits of implementing load management to improve power system security. International Journal of Electrical Power & Energy Systems, 32(6), 704–710.

    Article  Google Scholar 

  34. Atikol, U., Dagbasi, M., & Güven, H. (1999). Identification of residential end-use loads for demand-side planning in northern cyprus. Energy, 24(3), 231–238.

    Article  Google Scholar 

  35. Atikol, U. (2004). A demand-side planning approach for the commercial sector of developing countries. Energy, 29(2), 257–266.

    Article  Google Scholar 

  36. Keane, A., Tuohy, A., Meibom, P., Denny, E., Flynn, D., Mullane, A., et al. (2011). Demand side resource operation on the Irish power system with high wind power penetration. Energy Policy, 39(5), 2925–2934.

    Article  Google Scholar 

  37. Monts, K., Birnbaum, I., Bonevac, B., & Rothstein, E. (1989). Time-differentiated system load impacts of demand-side management: A case study. Electric Power Systems Research, 16(2), 165–172.

    Article  Google Scholar 

  38. Moura, P. S., & de Almeida, A. T. (2010). The role of demand-side management in the grid integration of wind power. Applied Energy, 87(8), 2581–2588.

    Article  Google Scholar 

  39. Osareh, A. R., Pan, J., & Rahman, S. (1996). An efficient approach to identify and integrate demand-side management on electric utility generation planning. Electric Power Systems Research, 36(1), 3–11.

    Article  Google Scholar 

  40. Moura, P. S., & de Almeida, A. T. (2010). Multi-objective optimization of a mixed renewable system with demand-side management. Renewable and Sustainable Energy Reviews, 14(5), 1461–1468.

    Article  Google Scholar 

  41. Malik, A. S. (2007). Impact on power planning due to demand-side management (DSM) in commercial and government sectors with rebound effect—A case study of central grid of Oman. Energy, 32(11), 2157–2166.

    Article  Google Scholar 

  42. Swisher, J., & Orans, R. (1995). The use of area-specific utility costs to target intensive DSM campaigns. Utilities Policy, 5(3–4), 185–197.

    Article  Google Scholar 

  43. Hirst, E. (1994). Effects of utility demand-side management programs on uncertainty. Resource and Energy Economics, 16(1), 25–45.

    Article  Google Scholar 

  44. Pupp, R., Woo, C.-K., Orans, R., Horii, B., & Heffner, G. (1995). Load research and integrated local T&D planning. Energy, 20(2), 89–94.

    Article  Google Scholar 

  45. Reddy, B. S. (1996). Economic evaluation of demand-side management options using utility avoided costs. Energy, 21(6), 473–482.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tugrul U. Daim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iskin, I., Daim, T.U. (2016). Technology Assessment: Energy Efficiency Programs in Pacific Northwest. In: Daim, T. (eds) Hierarchical Decision Modeling. Innovation, Technology, and Knowledge Management. Springer, Cham. https://doi.org/10.1007/978-3-319-18558-3_2

Download citation

Publish with us

Policies and ethics