Skip to main content

Molecular Dynamics of Thin Mesogene Layer Covering Carbon Nanotube

  • Conference paper
Book cover Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 167))

  • 929 Accesses

Abstract

Classical molecular dynamics simulations were performed for the thin layers covering the carbon nanotube (CNT). Two layers composed of n = 30 and n = 65 mesogenic molecules: 5CB, 6CB, 7CB, and 8CB covering CNT were studied. We investigated the dependence of the dynamics of the mesogenic molecules of the temperature, since the simulations were performed for a wide range of temperature, from T = 210 to 360 K. We studied influence of the temperature on the dynamics of mesogenic molecules. Several structural and dynamical characteristics of mesogenes were calculated: the mean square displacement, self-diffusion coefficient, radial distribution function, activation energy, Lindemann index. Moreover, the comparison of these characteristics with their counterparts of pure clusters (without nanotube) was performed and is presented and discussed. The impact of the CNT on the mesogene clusters is clearly visible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chandrasekhar S (1992) Liquid crystals. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Kuwajima S, Manabe A (2000) Computing the rotational viscosity of nematic liquid crystals by an atomistic molecular dynamics simulation. Chem Phys Lett 332:105–109. doi:10.1016/S0009-2614(00)01235-5

    Article  ADS  Google Scholar 

  3. Chilaya G, Petriashvili G, Chanishvili A, Terenetskaya I, Kireeva N, Lisetski L (2005) Provitamin D-2 and provitamin D-3 photo transformations in cholesteric liquid crystal mixtures induced by UV radiation. Mol Cryst Liq Cryst 433:73–85. doi:10.1080/15421400590956243

    Article  Google Scholar 

  4. Care CM, Cleaver DJ (2005) Computer simulation of liquid crystals. Rep Prog Phys 68:2665–2700. doi:10.1088/0034-4885/68/11/R04

    Article  ADS  Google Scholar 

  5. Lisetski LN, Minenko SS, Zhukov AV, Shtifanyuk PP, Lebovka NI (2009) Dispersions of carbon nanotubes in cholesteric liquid crystals. Mol Cryst Liq Cryst 510:43–50. doi:10.1080/15421400903058056

    Google Scholar 

  6. McDonald AJ, Hanna S (2006) Atomistic simulation of a model liquid crystal. J Chem Phys 124:164906. doi:10.1063/1.2193154

    Article  ADS  Google Scholar 

  7. Stassen H, Gburski Z (1994) Instantaneous normal-mode analysis of binary-liquid Ar-Kr mixtures. Chem Phys Lett 217:325–332. doi:10.1016/0009-2614(93)E1390-3

    Article  ADS  Google Scholar 

  8. Berardi R, Costantini A, Muccioli L, Orlandi S, Zannoni C (2007) A computer simulation study of the formation of liquid crystal nanodroplets from a homogeneous solution. J Chem Phys 126:044905. doi:10.1063/1.2430710

    Article  ADS  Google Scholar 

  9. Lisetski LN, Lebovka NI, Naydenov SV, Soskin MS (2011) Dispersions of multi-walled carbon nanotubes in liquid crystals: a physical picture of aggregation. J Mol Liq 164:143–147. doi:10.1016/j.molliq.2011.04.020

    Article  Google Scholar 

  10. Dendzik Z, Kośmider M, Raczyński P, Piątek A (2007) Interaction induced absorption of rare gas mixtures physisorbed on nanotubes and fullerenes–computer simulation study. J Non-Cryst Solids 353:4586–4590

    Article  ADS  Google Scholar 

  11. Bezrodna T, Chashechnikova I, Gavrilko T, Puchkovska G, Shaydyuk Y, Tolochko A, Baran J, Drozd M (2008) Structure formation and its influence on thermodynamic and optical properties of montmorillonite organoclay-5CB liquid crystal nanocomposites. Liq Cryst 35:265–274. doi:10.1080/02678290701830626

    Article  Google Scholar 

  12. Bezrodna T, Chashechnikova I, Nesprava V, Puchkovska G, Shaydyuk Y, Boyko Y, Baran J, Drozd M (2010) Structure peculiarities and optical properties of nanocomposite: 5CB liquid crystal-CTAB-modified montmorillonite clay. Liq Cryst 37:263–270. doi:10.1080/02678290903511677

    Article  Google Scholar 

  13. Komolkin A, Laaksonen A, Maliniak A (1994) Molecular-dynamics simulation of a nematic liquid-crystal. J Chem Phys 101:4103–4116. doi:10.1063/1.467460

    Article  ADS  Google Scholar 

  14. Gwizdala W, Górny K, Gburski Z (2008) Molecular dynamics and dielectric loss in 4-cyano-4-n-pentylbiphenyl (5CB) mesogene film surrounding carbon nanotube—computer simulation. J Mol Struct 887:148–151. doi:10.1016/j.molstruc.2007.12.045

    Article  ADS  Google Scholar 

  15. Dawid A, Gwizdala W (2009) Dynamical and structural properties of 4-cyano-4-n-pentylbiphenyl (5CB) molecules adsorbed on carbon nanotubes of different chiralities: computer simulation. J Non-Cryst Solids 355:1302–1306. doi:10.1016/j.jnoncrysol.2009.05.034

    Article  ADS  Google Scholar 

  16. Dawid A, Gwizdala W (2010) The dynamics of 5cb mesogene molecules between graphite walls—an MD study. Rev Adv Mater Sci 23:37–41

    Google Scholar 

  17. Gwizdala W, Górny K, Gburski Z (2011) The dynamics of 4-cyano-4-n-pentylbiphenyl (5CB) mesogen molecules located between graphene layers–MD study. Spectrochim Acta A Mol Biomol Spectrosc. doi:10.1016/j.saa.2010.08.040

    Google Scholar 

  18. Dawid A, Gburski Z (2012) Molecular dynamics simulation study of the liquid crystal phase in small mesogene cluster (9CB)(20). Mater Sci-Pol 30:212–216. doi:10.2478/s13536-012-0024-1

    Article  ADS  Google Scholar 

  19. Dawid A, Gburski Z (2007) Dielectric relaxation of 4-cyano-4-n-pentylbiphenyl (5CB) thin layer adsorbed on carbon nanotube—MD simulation. J Non-Cryst Solids 353:4339–4343. doi:10.1016/j.jnoncrysol.2007.02.072

    Article  ADS  Google Scholar 

  20. Nakazaki N, Takao Y, Eriguchi K, Ono K (2014) Molecular dynamics simulations of silicon chloride ion incidence during Si etching in Cl-based plasmas. Jpn J Appl Phys 53:056201. doi:10.7567/JJAP.53.056201

    Article  ADS  Google Scholar 

  21. Dawid A, Gburski Z (1997) Dynamical properties of the argon-krypton clusters: molecular dynamics calculations. J Mol Struct 410–411:507–511. doi:10.1016/S0022-2860(96)09512-9

    Google Scholar 

  22. Khan S, Singh JK (2014) Wetting transition of nanodroplets of water on textured surfaces: a molecular dynamics study. Mol Simul 40:458–468. doi:10.1080/08927022.2013.819578

    Article  Google Scholar 

  23. Gburski Z, Zerda T (1980) Vibrational dephasing and intermolecular interactions in liquids. Acta Phys Pol A 57:447–454

    Google Scholar 

  24. Iguchi R, Kawamura T, Suzuki Y, Inoue M, Kangawa Y, Kakimoto K (2014) Molecular dynamics simulation of graphene growth by surface decomposition of 6H-SiC(0001) and (000(1)over-bar). Jpn J Appl Phys 53:065601. doi:10.7567/JJAP.53.065601

    Article  ADS  Google Scholar 

  25. Kachel A, Gburski Z (1998) Chain formation in a model dipolar liquid: computer simulation study. J Phys Condens Matter 9:10095. doi:10.1088/0953-8984/9/46/007

    Article  ADS  Google Scholar 

  26. Kosmider M, Dendzik Z, Palucha S, Gburski Z (2004) Computer simulation of argon cluster inside a single-walled carbon nanotube. J Mol Struct 704:197–201. doi:10.1016/j.molstruc.2004.02.050

    Article  ADS  Google Scholar 

  27. Gao Y, Liu J, Shen J, Wu Y, Zhang L (2014) Influence of various nanoparticle shapes on the interfacial chain mobility: a molecular dynamics simulation. Phys Chem Chem Phys 16:21372–21382. doi:10.1039/c4cp03019b

    Article  Google Scholar 

  28. Raczynski P, Dawid A, Pietek A, Gburski Z (2006) Reorientational dynamics of cholesterol molecules in thin film surrounded carbon nanotube: molecular dynamics simulations. J Mol Struct 792–793:216–220. doi:10.1016/j.molstruc.2006.01.064

    Article  Google Scholar 

  29. Barker J, Fisher R, Watts R (1971) Liquid argon—Monte Carlo and molecular dynamics calculations. Mol Phys 21:657–673. doi:10.1080/00268977100101821

    Article  ADS  Google Scholar 

  30. Grammatikopoulos P, Cassidy C, Singh V, Benelmekki M, Sowwan M (2014) Coalescence behaviour of amorphous and crystalline tantalum nanoparticles: a molecular dynamics study. J Mater Sci 49:3890–3897. doi:10.1007/s10853-013-7893-5

    Article  ADS  MATH  Google Scholar 

  31. Honeycutt J, Andersen H (1987) Molecular-dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91:4950–4963. doi:10.1021/j100303a014

    Article  Google Scholar 

  32. Gburski Z (1985) Convergence of memory functions for the vibrational dephasing process in liquids. Chem Phys Lett 115:236–240. doi:10.1016/0009-2614(85)80687-4

    Article  ADS  Google Scholar 

  33. Fukunaga H, Takimoto J, Doi M (2004) Molecular dynamics simulation study on the phase behavior of the Gay-Berne model with a terminal dipole and a flexible tail. J Chem Phys 120:7792–7800. doi:10.1063/1.1687681

    Article  ADS  Google Scholar 

  34. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289

    Article  Google Scholar 

  35. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  Google Scholar 

  36. MacKerell BD, Bellott D, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616. doi:10.1021/jp973084f

    Article  Google Scholar 

  37. Tiberio G, Muccioli L, Berardi R, Zannoni C (2009) Towards in silico liquid crystals. Realistic transition temperatures and physical properties for n-cyanobiphenyls via molecular dynamics simulations. ChemPhysChem 10:125–136. doi:10.1002/cphc.200800231

    Article  Google Scholar 

  38. Pizzirusso A, Berardi R, Muccioli L, Ricci M, Zannoni C (2012) Predicting surface anchoring: molecular organization across a thin film of 5CB liquid crystal on silicon. Chem Sci 3:573–579. doi:10.1039/C1SC00696G

    Article  Google Scholar 

  39. Alexiadis A, Kassinos S (2008) Molecular simulation of water in carbon nanotubes. Chem Rev 108:5014–5034. doi:10.1021/cr078140f

    Article  Google Scholar 

  40. Gburski Z, Górny K, Raczynski P (2010) The impact of a carbon nanotube on the cholesterol domain localized on a protein surface. Solid State Commun 150:415–418. doi:10.1016/j.ssc.2009.12.005

    Article  ADS  Google Scholar 

  41. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic, San Diego

    Google Scholar 

  42. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  43. Kosterlitz JM, Thouless DJ (1973) Ordering, metastability and phase-transitions in 2 dimensional systems. J Phys C-Solid State Phys 6:1181–1203. doi:10.1088/0022-3719/6/7/010

    Article  ADS  Google Scholar 

  44. Dawid A, Gburski Z (2003) Interaction-induced light scattering in a fullerene surrounded by an ultrathin argon atmosphere: molecular dynamics simulation. Phys Rev A 68:065202. doi:10.1103/PhysRevA.68.065202

    Article  ADS  Google Scholar 

  45. Piatek A, Dawid A, Gburski Z (2006) The existence of a plastic phase and a solid–liquid dynamical bistability region in small fullerene cluster (C60)7: molecular dynamics simulation. J Phys Condens Matter 18:8471–8480. doi:10.1088/0953-8984/18/37/006

    Article  ADS  Google Scholar 

  46. Wentzcovitch R (1991) Invariant molecular-dynamics approach to structural phase-transitions. Phys Rev B 44:2358–2361. doi:10.1103/PhysRevB.44.2358

    Article  ADS  Google Scholar 

  47. Tycko R, Dabbagh G, Fleming R, Haddon R, Makhija A, Zahurak S (1991) Molecular-dynamics and the phase-transition in solid C60. Phys Rev Lett 67:1886–1889. doi:10.1103/PhysRevLett.67.1886

    Article  ADS  Google Scholar 

  48. Dawid A, Dendzik Z, Gburski Z (2004) Molecular dynamics study of ultrathin argon layer covering fullerene molecule. J Mol Struct 704:173–176. doi:10.1016/j.molstruc.2004.01.065

    Article  ADS  Google Scholar 

  49. Vicsek T, Czirok A, Benjacob E, Cohen I, Shochet O (1995) Novel type of phase-transition in a system of self-driven particles. Phys Rev Lett 75:1226–1229. doi:10.1103/PhysRevLett.75.1226

    Article  ADS  Google Scholar 

  50. Raczynski P, Dawid A, Gburski Z (2005) Depolarized light scattering in small fullerene clusters—computer simulation. J Mol Struct 744:525–528. doi:10.1016/j.molstruc.2004.12.064

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Raczyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Raczyński, P., Raczyńska, V., Gburski, Z. (2015). Molecular Dynamics of Thin Mesogene Layer Covering Carbon Nanotube. In: Fesenko, O., Yatsenko, L. (eds) Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies. Springer Proceedings in Physics, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-319-18543-9_5

Download citation

Publish with us

Policies and ethics