Skip to main content

Biosynthesis of Quantum Dots and Their Potential Applications in Biology and Biomedicine

  • Conference paper
Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 167))

Abstract

In this review, some basic information about structure and optical properties of semiconductor quantum dots (QDs) will be discussed. Moreover, the mechanisms and features of biosynthetic approach for obtaining semiconductor nanoparticles with different chemical compositions and sizes by various living organisms will be overviewed. Such “green” biotechnology is thought to be clean, nontoxic, and environmentally acceptable. Biosynthesis methods are advantageous also because nanoparticles are sometimes coated with a lipid layer that confers physiological solubility and stability, which is critical for biomedical applications and is the bottleneck of other synthetic methods. In addition, potential biological and clinical applications of synthesized QDs will be briefly reviewed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID (2011) Biocompatible quantum dots for biological applications. Chem Biol 18(1):10–24

    Article  Google Scholar 

  2. Antolini F, Pentimalli M, Di Luccio T, Terzi R, Schioppa M, Re M, Tapfer L (2005) Structural characterization of CdS nanoparticles grown in polystyrene matrix by thermolytic synthesis. Mater Lett 59(24):3181–3187

    Article  Google Scholar 

  3. Chen CC, Herhold AB, Johnson CS, Alivisatos AP (1997) Size dependence of structural metastability in semiconductor nanocrystals. Science 276:398–401

    Article  Google Scholar 

  4. Dameron CT, Reese RN, Mehra RK (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338(13):596–597

    Article  ADS  Google Scholar 

  5. Borovaya MN, Naumenko AP, Yemets AI, Blume YB (2014) Stability of the CdS quantum dots, synthesized by the bacteria Escherichia coli. Proc Natl Acad Sci Ukraine 7:145–151 (In Ukranian)

    Google Scholar 

  6. Sastry M, Ahmad AM, Khan I, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170

    Google Scholar 

  7. Peng C-W, Li Y (2010) Application of quantum dots-based biotechnology in cancer diagnosis: current status and future perspectives. J Nanomater 2010:1–11

    Google Scholar 

  8. Singh S, Bozhilov K, Mulchandani A, Myung N, Chen W (2010) Biologically programmed synthesis of core-shell CdSe/ZnS nanocrystals. Chem Commun 46:1473–1475

    Article  Google Scholar 

  9. Michalet X, Pinaud FF, Bentolila LA (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  ADS  Google Scholar 

  10. Rizvi SB, Ghaderi S, Keshtgar M, Seifalian AM (2010) Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev 1:1–15

    Article  Google Scholar 

  11. Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD, Brus LE (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383:802–804

    Article  ADS  Google Scholar 

  12. Li J, Wu D, Miao Z, Zhang Y (2010) Preparation of quantum dot bioconjugates and their applications in bio-imaging. Curr Pharm Biotechnol 11:662–671

    Article  Google Scholar 

  13. Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Quantum dots—characterization, preparation and usage in biological systems. Int J Mol Sci 10:656–673

    Article  Google Scholar 

  14. Ghaderi S (2012) Development of fluorescent nanoparticles ‘quantum dots’ for biomedical application. UCL Center for Nanotechnology and Regenerative Medicine Division of Surgery & Interventional Sciences University College, London

    Google Scholar 

  15. Zhang Y, Clapp A (2011) Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors 11:11036–11055

    Article  Google Scholar 

  16. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  Google Scholar 

  17. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  Google Scholar 

  18. Peng XG, Wickham J, Alivisatos AP (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120:5343–5344

    Article  Google Scholar 

  19. Ko WYL, Bagaria HG, Asokan S, Lin K-J, Wong MS (2010) CdSe tetrapod synthesis using cetyltrimethylammonium bromide and heat transfer fluids. J Mater Chem 20:2474–2478

    Article  Google Scholar 

  20. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmüller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem 106:7177–7185

    Article  Google Scholar 

  21. Qian H, Dong C, Weng J, Ren J (2006) Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe nanocrystals. Small 2:747–751

    Article  Google Scholar 

  22. Brichkin SB, Chernykh EV (2011) Hydrophilic semiconductor quantum dots. High Energy Chem 45(1):1–12

    Article  Google Scholar 

  23. Zhang H, Wang L, Xiong H, Hu L, Yang B, Li W (2003) Hydrothermal synthesis for high quality CdTe QDs. Adv Mater 15(20):1712–1715

    Article  Google Scholar 

  24. Li L, Qian H, Ren J (2005) Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. Chem Commun 8:528–530

    Article  Google Scholar 

  25. Pfeiffer LN, West KW, Willett RL, Akiyama H, Rokhinso LP (2005) Nanostructures in GaAs fabricated by molecular beam epitaxy. Bell Labs Tech J 10(3):151–159

    Article  Google Scholar 

  26. Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110(11):6873–6890

    Article  Google Scholar 

  27. Winkler LD, Arceo JF, Hughes WC (2005) Quantum dots: an experiment for physical or materials chemistry. J Chem Educ 82(11):1700–1702

    Article  Google Scholar 

  28. Krolikowska A, Kudelski A, Michota A, Bukowska J (2003) SERS studies on the structure of thioglycolic acid monolayers on silver and gold. Surf Sci 532:227–232

    Article  ADS  Google Scholar 

  29. Watson JHP, Ellwood DC, Soper AK, Charnock J (1999) Nanosized strongly—magnetic bacterially-produced iron sulfide materials. J Magn Magn Mater 203:69–72

    Article  ADS  Google Scholar 

  30. Sinha S, Pan I, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biosci 19:1113–1130

    Google Scholar 

  31. Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:1–16

    Google Scholar 

  32. Cunningham DP, Lundie LL (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59(1):7–14

    Google Scholar 

  33. Sweeney RY, Mao C, Gao X (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559

    Article  Google Scholar 

  34. Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B 70:142–146

    Article  Google Scholar 

  35. Kho R, Torres-Martinez CL, Mehra RK (2000) A simple colloidal synthesis for gram-quantity production of water-soluble ZnS nanocrystal powders. J Colloid Interface Sci 227:561–566

    Article  Google Scholar 

  36. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  ADS  Google Scholar 

  37. Bai H-J, Zhang Z-M, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28:1135–1139

    Article  Google Scholar 

  38. Bai HJ, Zhang ZM (2009) Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett 63(9–10):764–766

    Article  Google Scholar 

  39. Bao H, Hao N, Yang Y, Zhao D (2010) Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res 3:481–489

    Article  Google Scholar 

  40. Sturzenbaum SR, Winters C, Galay M, Morgan AJ, Kille P (2001) Metal ion trafficking in earthworms—identification of a cadmium specific metallothionein. J Biol Chem 276:34013

    Article  Google Scholar 

  41. Sturzenbaum SR, Georgiev O, Morgan AJ, Kille P (2004) Cadmium detoxification in earthworms: from genes to cells. Environ Sci Technol 38:6283–6289

    Article  ADS  Google Scholar 

  42. Sturzenbaum SR, Hockner M, Panneerselvam A, Levitt J, Bouillard J-S, Taniguchi S, Dailey L-A, Ahmad Khanbeigi R, Rosca EV, Thanou M, Suhling K, Zayats AV, Green M (2012) Biosynthesis of luminescent quantum dots in an earthworm. Nat Nanotechnol 8:57–60

    Article  ADS  Google Scholar 

  43. Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Article  ADS  Google Scholar 

  44. Ahner BA, Kong S, Morel FMM (1995) Phytochelatin production in marine algae. 1. An interspecies comparison. Limnol Oceanogr 40:649–657

    Article  Google Scholar 

  45. Gekeler W, Grill E, Winnacker EL, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150:197–202

    Article  Google Scholar 

  46. Scarano G, Morelli E (2003) Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Sci 165:803–810

    Article  Google Scholar 

  47. Bae W, Mehra RK (1998) Properties of glutathione- and phytochelatin-capped CdS bionanocrystallites. J Inorg Biochem 69:33–43

    Article  Google Scholar 

  48. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastr M (2002) Enzyme-mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  Google Scholar 

  49. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89(8):1861–1873

    Article  Google Scholar 

  50. Cantor CR, Schimmel PR (1980) Biophysical chemistry, Part II: Techniques for the study of biological structure and function, W.H. Freeman and Co, San Francisco, 365p

    Google Scholar 

  51. Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96:13611–13615

    Article  ADS  Google Scholar 

  52. Borovaya MN, Naumenko AP, Pirko YV, Krupodorova ТА, Yemets AI, Blume YB (2014) Production of CdS quantum dots with the use of the fungus Pleurotus ostreatus. Proc Natl Acad Sci Ukraine 2:153–159 (In Ukranian)

    Google Scholar 

  53. Kumar SA, Ansary AA, Ahmad A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium Oxysporum. J Biomed Nanotechnol 3:190–194

    Article  Google Scholar 

  54. Eflink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114:199

    Article  Google Scholar 

  55. Kavitha KS, Baker S, Rakshith D, Kavitha HU, Yashwantha RHC, Harini BP, Satish S (2013) Plants as green source towards synthesis of nanoparticles. Int Res J Biol Sci 2(6):66–76

    Google Scholar 

  56. Hudlikar M, Joglekar S, Dhaygude M, Kodam K (2012) Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach. J Nanoparticle Res 14(5):1–5

    Article  Google Scholar 

  57. Osoniyi O, Onajobi F (2003) Coagulant and anticoagulant activities in Jatropha curcas latex. J Ethnopharmacol 89:101–105

    Article  Google Scholar 

  58. Borovaya MN, Naumenko AP, Matvieieva NA, Blume YB, Yemets AI (2014) Biosynthesis of luminescent CdS quantum dots using plant hairy root culture. Nanoscale Res. Lett. 9(1):1–7

    Google Scholar 

  59. Gomes SAO, Vieira CS, Almeida DB, Santos-Mallet JR, Menna-Barreto RFS, Cesar CL, Feder D (2011) CdTe and CdSe quantum dots cytotoxicity: a comparative study on microorganisms. Sensors 11:11664–11678

    Article  Google Scholar 

  60. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  ADS  Google Scholar 

  61. Eggenberger K, Merkulov A, Darbandi M, Nann T, Nick P (2007) Direct immunofluorescence of plant microtubules based on semiconductor nanocrystals. Bioconjug Chem 30(20):1–7

    Google Scholar 

  62. Riegler J, Nick P, Kielmann U, Nann T (2003) Visualize the self-assembly of tubulin with luminescent nanorods. J Nanosci Nanotechnol 3:380–385

    Article  Google Scholar 

  63. Barroso MM (2011) Quantum dots in cell biology. J Histochem Cytochem 59:237–251

    Article  Google Scholar 

  64. Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 10:609–622

    Article  Google Scholar 

  65. Danglot L, Chaineau M, Dahan M, Gendron MC, Boggetto N, Perez F, Galli T (2010) Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling. J Cell Sci 123:723–735

    Article  Google Scholar 

  66. Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22(2):198–203

    Article  Google Scholar 

  67. Rajan SS, Liu HY, Vu TQ (2008) Ligand-bound quantum dot probes for studying the molecular scale dynamics of receptor endocytic trafficking in live cells. ACS Nano 2:1153–1166

    Article  Google Scholar 

  68. Geng L, Zhang HL, Peng HB (2009) The formation of acetylcholine receptor clusters visualized with quantum dots. BMC Neurosci 10:80

    Article  Google Scholar 

  69. Garon EB, Marcu L, Luong Q, Tcherniantchouk O, Crooks GM, Koeffler HP (2007) Quantum dot labeling and tracking of human leukemic, bone marrow and cord blood cells. Leuk Res 31(5):643–651

    Article  Google Scholar 

  70. Shah BS, Clark PA, Moioli EK, Stroscio MA, Mao JJ (2007) Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett 7(10):3071–3079

    Article  ADS  Google Scholar 

  71. Orndorff RL, Warnement MR, Mason JN, Blakely RD, Rosenthal SJ (2008) Quantum dot ex vivo labeling of neuromuscular synapses. Nano Lett 8(3):780–785

    Article  ADS  Google Scholar 

  72. Bannai H, Levi S, Schweizer C, Dahan M, Triller A (2006) Imaging the lateral diffusion of membrane molecules with quantum dots. Nat Protoc 1(6):2628–2634

    Article  Google Scholar 

  73. Roberti MJ, Morgan M, Menendez G, Pietrasanta LI, Jovin TM, Jares-Erijman EA (2009) Quantum dots as ultrasensitive nanoactuators and sensors of amyloid aggregation in live cells. J Am Chem Soc 131(23):8102–8107

    Article  Google Scholar 

  74. Crut A, Geron-Landre B, Bonnet I, Bonneau S, Desbiolles P, Escude C (2005) Detection of single DNA molecules by multicolor quantum dot end-labeling. Nucleic Acids Res 33(11):98/1–98/9

    Article  Google Scholar 

  75. Ye M, Zhang Y, Li H, Zhang Y, Tan P, Tang H, Yao S (2009) A novel method for the detection of point mutation in DNA using single-base-coded CdS nanoprobes. Biosens Bioelectron 24(8):2339–2345

    Article  Google Scholar 

  76. Bailey VJ, Easwaran H, Zhang Y, Griffiths E, Belinsky SA, Herman JG, Baylin SB, Carraway HE, Wang TH (2009) MS-qFRET: a quantum dot-based method for analysis of DNA methylation. Genome Res 19(8):1455–1461

    Article  Google Scholar 

  77. Pathak S, Choi SK, Arnheim N, Thompson ME (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 123:4103–4104

    Article  Google Scholar 

  78. Knoll JHM (2007) Human metaphase chromosome FISH using quantum dot сonjugates. Methods Mol Biol 374:55–66

    Google Scholar 

  79. Kapoor V, Hakim FT, Rehman N, Gress RE, Telford WG (2009) Quantum dots thermal stability improves simultaneous phenotype-specific telomere length measurement by FISH-flow cytometry. J Immunol Methods 344:6–14

    Article  Google Scholar 

  80. Chan P, Yen T, Frederique R, Gonzalez-Maeso J, Seal-fon SC (2005) Method for multiplex cellular detection of mRNAs using quantum dot fluorescence in situ hybridization. Nucleic Acids Res 33:161–166

    Article  Google Scholar 

  81. Ioannou D, Tempest HC, Skinner BM, Thornhill AR, Ellis M, Griffin DK (2009) Quantum dots as new-generation fluorochromes for FISH. Chromosome Res 17:519–530

    Article  Google Scholar 

  82. Tholouli E, Hoyland JA, Di Vizio D, O’Connell F, Macdermott SA, Twomey D, Levenson R, Yin JA, Golub TR, Loda MK, Byers R (2006) Imaging of multiple mRNA targets using quantum dot based in situ hybridization and spectral deconvolution in clinical biopsies. Biochem Biophys Res Commun 348:628–636

    Article  Google Scholar 

  83. Burroughs FG, Samboju NC, Samuel JP, Webb SR, Yau KY (2011) Linear DNA molecule delivery using PEGylated quantum dots for stable transformation in plants. US Patent 8653327 B2, 7 Jul 2011

    Google Scholar 

  84. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:12.1–12.32

    Article  Google Scholar 

  85. Riggio C, Pagni E, Raffa V, Cuschieri A (2011) Nano-oncology: clinical application for cancer therapy and future perspectives. J Nanomater 2011:1–10

    Article  Google Scholar 

  86. True LD, Gao X (2007) Quantum dots for molecular pathology. J Mol Diagn 9:7–11

    Article  Google Scholar 

  87. Høgdall EVS, Christensen L, Kjaer SK (2007) CA125 expression pattern, prognosis and correlation with serum CA125 in ovarian tumor patients. From The Danish “MAL-OVA” Ovarian Cancer Study. Gynecol Oncol 104(3):508–515

    Article  Google Scholar 

  88. Wang Z, Wang H-Y, Liang R-Q, Ruan K-C (2004) Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochim Biophys Sin 36(10):681–686

    Article  Google Scholar 

  89. Xiao Y, Gao X, Gannot G (2008) Quantitation of HER2 and telomerase biomarkers in solid tumors with IgY antibodies and nanocrystal detection. Int J Cancer 122(10):2178–2186

    Article  Google Scholar 

  90. Qian J, Yong K-T, Roy I (2007) Imaging pancreatic cancer using surface-functionalized quantum dots. J Phys Chem B 111(25):6969–6972

    Article  Google Scholar 

  91. Gao X (2007) Multifunctional quantum dots for cellular and molecular imaging. In: Proceedings of 29th annual international conference on IEEE EMBS, Lyon, France, 23–28 Aug, pp 524–525

    Google Scholar 

  92. Kim SW, Zimmer JP, Ohnishi S (2005) Engineering InAsxP1-x/InP/ZnSe III-V alloyed core/shell quantum dote for the near-infrared. J Am Chem Soc 127:10526–10532

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Borovaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Borovaya, M.N., Burlaka, O.M., Yemets, A.I., Blume, Y.B. (2015). Biosynthesis of Quantum Dots and Their Potential Applications in Biology and Biomedicine. In: Fesenko, O., Yatsenko, L. (eds) Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies. Springer Proceedings in Physics, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-319-18543-9_24

Download citation

Publish with us

Policies and ethics