Skip to main content

Correlation Processing of Speckle Pattern in Multimode Polymer Optical Fiber for Deformation Monitoring in Nanometer Range

  • Conference paper
Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 167))

Abstract

One of the mechanisms of optical fiber sensing is to convert the fiber strains caused by external parameters into changes of the phase of the light traveling inside the optical fiber. Hence, interferometric measuring systems should be employed to detect phase changes with high sensitivity. Conventional interferometers require two interacting waves with identical polarization state to ensure highly fringes visibility. Such a requirement is easily achievable when, for instance, the sensitive arm of the interferometer is a single mode fiber. However, in some practical cases using a multimode optical fiber (MMF) is much more convenient than using a single mode fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pomarico A et al (1999) Optical fiber strain gauge based on speckle correlation. Opt Lasers Technol 31:219–224

    Article  ADS  Google Scholar 

  2. Yu FTS et al (1993) Submicrometer displacement sensing using inner-product multimode fiber speckle fields. Appl Optics 32(25):4685–4689

    Article  ADS  Google Scholar 

  3. Lomer M et al (2013) Measurement of displacement in the micrometer range using speckle pattern correlation in multimode fibers. In: Proceedings of SPIE 8794. Fifth European workshop on optical fibre sensors, Krakow

    Google Scholar 

  4. Gupta B et al (2008) Qualifying fibre optic temperature sensor using speckle metrology. Int J Inform Technol Knowl Manag 1:337–350

    ADS  Google Scholar 

  5. Spillman WB et al (1989) Statistical-mode sensor for fiber optic vibration sensing uses. Appl Optics 28(15):3166–3176

    Article  ADS  Google Scholar 

  6. Rodriguez-Cobo L et al (2012) POF vibration sensor based on speckle pattern changes. In: Proceedings of SPIE 8421, OFS2012 22nd international conference on optical fiber sensors, Beijing, China

    Google Scholar 

  7. Zhang Z, Ansari F (2006) Fiber-optic laser speckle-intensity crack sensor for embedment in concrete. Sens Actuators A Phys 126(1):107–111

    Article  Google Scholar 

  8. Rodriguez-Cobo L et al (2013) Optical fiber strain sensor with extended dynamic range based on specklegrams. Sens Actuators A Phys 203:341–345

    Article  Google Scholar 

  9. Gomez J, Salazar A (2011) Self-correlation fiber specklegram sensor using volume characteristics of speckle patterns. Opt Lasers Eng 49(3):473–480

    Article  Google Scholar 

  10. Redding B, Cao H (2012) Using a multimode fiber as a high-resolution, low-loss spectrometer. Opt Lett 37:3384–3386

    Article  ADS  Google Scholar 

  11. Silva-Lopez M et al (2005) Strain and temperature sensitivity of a single-mode polymer optical fiber. Opt Lett 30:3129–3131

    Article  ADS  Google Scholar 

  12. Crosignani B, Daino B, Porto P (1976) Speckle-pattern visibility of light transmitted through a multimode optical fiber. JOSA 66(11):1312–1313

    Article  ADS  Google Scholar 

  13. Goodman J, Rawson E (1981) Statistics of modal noise in fibers: a case of constrained speckle. Opt Lett 6(7):324–326

    Article  ADS  Google Scholar 

  14. Tremblay Y, Kawasaki B, Hill K (1981) Modal noise in optical fibers: open and closed speckle pattern regimes. Appl Optics 20(9):1652–1655

    Article  ADS  Google Scholar 

  15. Lujo I et al (2008) Fiber-optic vibration sensor based on multimode fiber. Radioengineering 17(2):93–97

    Google Scholar 

  16. Zhang Z, Ansari F (2005) Crack tip opening displacement in micro-cracked concrete by an embedded optical fiber sensor. Eng Fract Mech 72(16):2505–2518

    Article  Google Scholar 

  17. Dhall A, Chhabra JK, Aulakh NS (2005) Intrusion detection system based on speckle pattern analysis. Exp Tech 29(1):25–31

    Article  Google Scholar 

  18. Lim JH et al (2004) Car window antitrapping optical fiber system based on a fiber speckle pattern. Opt Eng 43(5):1148–1151

    Article  ADS  Google Scholar 

  19. Kulchin YN et al (2008) Correlation processing of the signals of the single-fiber intermode interferometer with a small number of excited modes. Key Eng Mater 381–382:627–630

    Article  Google Scholar 

  20. Kulchin YN et al (2009) Principles of correlation processing of the speckle fields. In: Adaptive methods of processing modulated optical speckle fields, Fizmatlit, Moscow, pp 37–55 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Varyshchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Varyshchuk, V., Bobitski, Y. (2015). Correlation Processing of Speckle Pattern in Multimode Polymer Optical Fiber for Deformation Monitoring in Nanometer Range. In: Fesenko, O., Yatsenko, L. (eds) Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies. Springer Proceedings in Physics, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-319-18543-9_23

Download citation

Publish with us

Policies and ethics