Skip to main content

Silicon Submicron Rods Imaging by Surface Plasmon Resonance

  • Conference paper
Book cover Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 167))

  • 921 Accesses

Abstract

The potential of surface plasmon resonance-enhanced total internal reflection microscopy (TIRM) for visualization of microscopic particles has been demonstrated using microscopic-sized silicon rods as a test object. Si-rods were deposited upon the surface of the plasmon-supporting gold film by sedimentation from suspension. Filiform objects were imaged by optical microscope upon SPR excitation and by regular light microscope. Quality of images and specific features of light scattering from filiform objects are discussed. The study was aimed at development of a novel type of SPR-based biosensor relied upon direct count of biological species of interest (bacteria, viruses, large biomolecular complexes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sagle LB, Ruvuna LK, Ruemmele JA et al (2011) Advances in localized surface plasmon resonance spectroscopy biosensing. Nanomedicine 6(8):1447–1462

    Article  Google Scholar 

  2. Wang F, Ron Shen Y (2006) General properties of local plasmons in metal nanostructures. Phys Rev Lett 97:206806

    Article  ADS  Google Scholar 

  3. Zeng S, Yong K-T, Roy I et al (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6(3):491–506

    Article  Google Scholar 

  4. Born M, Wolf E (1975) Principles of optics, 5th edn. Pergamon, London

    Google Scholar 

  5. Papathanassoglou DA, Vohnsen B (2003) Direct visualization of evanescent optical waves. Am J Phys 71(7):670–677

    Article  ADS  Google Scholar 

  6. Guasto JF, Huang P, Breuer KS (2008) Evanescent wave microscopy. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer, New York, pp 638–645

    Chapter  Google Scholar 

  7. Prieve DC (1999) Measurement of colloidal forces with TIRM. Adv Colloid Interface Sci 82(1–3):93–125

    Article  Google Scholar 

  8. Axelrod D (1990) Total internal reflection fluorescence microscopy. In: Grinstein S, Foskett JK (eds) Modern non-invasive techniques in cell biology, Cell biology series. Wiley-Liss, New York, pp 93–127

    Google Scholar 

  9. Axelrod D, Hellen EH, Fulbright RM (1992) Total internal reflection fluorescence. In: Lakowicz J (ed) Fluorescence spectroscopy: principles and applications, vol 3, Biochemical applications. Plenum, New York, pp 289–343

    Google Scholar 

  10. Schneckenburger H (2005) Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr Opin Biotechnol 16(1):13–18

    Article  Google Scholar 

  11. Knight AE (2014) Single-molecule fluorescence imaging by total internal reflection fluorescence microscopy (IUPAC Technical Report). Pure Appl Chem 86(8):1303–1320

    Article  Google Scholar 

  12. Farahani JN, Schibler MJ, Bentolila LA (2010) Stimulated emission depletion (STED) microscopy: from theory to practice. In: Méndez-Vilas A, Díaz J (eds) Microscopy: science, technology, applications and education, vol 2. FORMATEX, Spain, pp 1539–1547

    Google Scholar 

  13. Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev A 106:874–881

    Article  ADS  Google Scholar 

  14. Yariv A, Yeh P (1984) Optical waves in crystals. Wiley, New York

    Google Scholar 

  15. Kittel C (1996) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  16. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer tracts in modern physics, vol 111. Springer, Berlin

    Google Scholar 

  17. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  18. Fu Y, Thylen L, Agren H (2008) A lossless negative dielectric constant from quantum dot exciton polaritons. Nano Lett 8(5):1551–1555

    Article  ADS  Google Scholar 

  19. Ginzburg P, Orenstein M (2008) Metal-free quantum-based metamaterial for surface plasmon polariton guiding with amplification. J Appl Phys 104:063513

    Article  ADS  Google Scholar 

  20. Withayachumnankul W, Abbott D (2009) Metamaterials in the Terahertz Regime. IEEE Photonics J 1(2):99–118

    Article  Google Scholar 

  21. Abelès F (1950) Recherches sur la propagation des ondes électromagnétiques sinusoidales dans les milieux stratifiés. Application aux couche minces. Ann Phys 5:596–640

    Google Scholar 

  22. Beketov GV, Shirshov YM, Shynkarenko OV, Chegel VI (1998) Surface plasmon resonance spectroscopy: prospects of superstrate refractive index variation for separate extraction of molecular layer parameters. Sens Actuators B 48(1–3):432–438

    Article  Google Scholar 

  23. Werner TC, Bunting JR, Cathou RE (1972) The shape of the immunoglobulin molecules in solution. Proc Natl Acad Sci U S A 69(4):795–799

    Article  ADS  Google Scholar 

  24. Ye G, Yang W, Jiang L, He S (2014) Surface plasmon resonance phase-sensitive imaging (SPR-PI) sensor based on a novel prism phase modulator. Prog Electromagn Res 145:309–318

    Article  Google Scholar 

  25. Benahmed AJ, Ho C-M (2007) Bandgap-assisted surface-plasmon sensing. Appl Opt 46(16):3369–3375

    Article  ADS  Google Scholar 

  26. Lesuffleur A, Im H, Lindquist NC, Lim KS, Oh S-H (2008) Plasmonic nanohole arrays for real-time multiplex biosensing. Proc SPIE 7035:703504–703510

    Article  Google Scholar 

  27. De Mol NJ, Fisher MJE (eds) (2010) Surface plasmon resonance: methods and protocols. Methods in Molecular Biology, vol 627. Humana Press

    Google Scholar 

  28. Tanious FA, Nguyen B, Wilson WD (2008) Biosensor-surface plasmon resonance methods for quantitative analysis of biomolecular interactions. In: Correia J, Detrich III HW (eds), Biophysical tools for biologists: in vitro techniques, vol 1. Academic, Elsevier, pp 53–77

    Google Scholar 

  29. Fratamico PM, Strobaugh TP, Medina MB et al (1998) Detection of Escherichia coli O157:H7 using a surface plasmon resonance biosensor. Biotechnol Tech 12(7):571–576

    Article  Google Scholar 

  30. Leonard P, Hearty S, Quinn J et al (2004) A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron 19(10):1331–1335

    Article  Google Scholar 

  31. Waswa JW, Debroy C, Irudayaraj J (2006) Rapid detection of Salmonella enteritidis and Escherichia coli using surface plasmon resonance biosensor. J Food Process Eng 29(4):373–385

    Article  Google Scholar 

  32. Barlen B, Mazumdar SD, Lezrich O et al (2007) Detection of Salmonella by surface plasmon resonance. Sensors 7:1427–1446

    Article  Google Scholar 

  33. Choi H-J (2012) Vapor–liquid–solid growth of semiconductor nanowires. In: Yi G-C (ed) Semiconductor nanostructures for optoelectronic devices. Springer, Berlin, pp 1–36

    Chapter  Google Scholar 

  34. Arimoto R, Murray JM (1996) Orientation-dependent visibility of long thin objects in polarization-based microscopy. Biophys J 70(6):2969–2980

    Article  Google Scholar 

  35. Bohren CF, Huffman DR (1998) Angular dependence of scattering. In: Absorption and scattering of light by small particles. Wiley, New York, pp 321–429

    Google Scholar 

Download references

Acknowledgments

The authors would like to extend their most sincere appreciation to Prof. A. Klimovskaya for providing the VLS-grown silicon rods for this study.

This work was partially supported by Swiss National Science Foundation through SCOPES Joint Research Project IZ73Z0_152661 “Manufacturing of Biosensors Aided by Plasma Polymerization.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Rengevych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Rengevych, O.V., Beketov, G.V., Ushenin, Y.V. (2015). Silicon Submicron Rods Imaging by Surface Plasmon Resonance. In: Fesenko, O., Yatsenko, L. (eds) Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies. Springer Proceedings in Physics, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-319-18543-9_20

Download citation

Publish with us

Policies and ethics