Skip to main content

Spin-Crossover Nanocrystals and Ising Model

  • Conference paper

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 167))

Abstract

A compressible model of spin-crossover solid is studied in the framework of the Ising-like model with two order parameters under statistical approach where the effect of elastic strain on interaction integral is taken into account. From these considerations the relation between the order parameters during temperature changes was examined. Starting from the phenomenological Hamiltonian, entropy has been derived in mean field approach and the phase diagram which characterizes the system is analyzed numerically. Also the model for the breathing crystal field of spin-crossover solids is presented. Using Monte Carlo simulation we have systematically studied the thermal transition of spin-crossover solids for local random fields with different statistical characteristics. It is found that the breathing of crystal field provokes the broadening of the hysteresis loop, but for strong colored fluctuations its power spectrum is diminished and the width of the hysteresis loop approaches again to the deterministic one.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kahn O (1993) Molecular magnetism. VCH, New York

    Google Scholar 

  2. Gütlich P, Goodwin HA (eds) (2004) Spin crossover in transition metal compounds I-III. Springer, Berlin

    Google Scholar 

  3. Halcrow MA (ed) (2013) Spin-crossover materials: properties and applications. Wiley, Chichester

    Google Scholar 

  4. Gudyma Iu, Enachescu C, Maksymov A (2015) Kinetics of nonequilibrium transition in spin-crossover compounds. In: Fesenko O, Yatsenko L (eds) Nanocomposites, nanophotonics, nanobiotechnology, and applications. Springer, Cham, pp 375–401

    Google Scholar 

  5. Wajnflasz J (1970) Etude de la transition “Low Spin”-“High Spin” dans les complexes octaédriques d’ion de transition. Phys Status Solidi B 40:537–545

    Article  ADS  Google Scholar 

  6. Wajnflasz J, Pick R (1971) Transitions “Low Spin”–“High Spin” dans les complexes de Fe2+. J Phys Colloques 32:C1-91–C1-92

    Google Scholar 

  7. Bousseksou A, Nasser J, Linares J, Boukheddaden K, Varret F (1992) Ising-like model for the two-step spin-crossover. J Phys I 2:1381–1403

    Google Scholar 

  8. Bousseksou A, Varret F, Nasser J (1993) Ising-like model for the two-step spin-crossover of binuclear molecules. J Phys I 3:1463–1473

    Google Scholar 

  9. Bousseksou A, Constant-Macuado H, Varret F (1995) A simple Ising-like model for spin conversion including molecular vibration. J Phys I 5:747–760

    Google Scholar 

  10. Nicolazzi W, Pillet S, Lecomte C (2008) Two-variable anharmonic model for spin-crossover solids: a like-spin domains interpretation. Phys Rev B 78:174401

    Article  ADS  Google Scholar 

  11. Nicolazzi W, Pillet S (2012) Structural aspects of the relaxation process in spin crossover solids: phase separation, mapping of lattice strain, and domain wall structure. Phys Rev B 85:094101

    Article  ADS  Google Scholar 

  12. Gudyma Iu, Ivashko V, Linares J (2014) Diffusionless phase transition with two order parameters in spin-crossover solids. J Appl Phys 116:173509

    Article  ADS  Google Scholar 

  13. Klinduhov N, Chernyshov D, Boukheddaden K (2010) Choice of dynamics for spin-crossover system. Phys Rev B 81:094408

    Article  ADS  Google Scholar 

  14. Catala L, Volatron F, Brinzei D, Mallah T (2009) Functional coordination nanoparticles. Inorg Chem 48:3360–3370

    Article  Google Scholar 

  15. Galán-Mascarós JR, Coronado E, Forment-Aliaga A, Monrabal-Capilla M, Pinilla-Cienfuegos E, Ceolin M (2010) Tuning size and thermal hysteresis in bistable spin crossover nanoparticles. Inorg Chem 49:5706–5714

    Article  Google Scholar 

  16. Bousseksou A, Molnár G, Salmon L, Nicolazzi W (2011) Molecular spin crossover phenomenon: recent achievements and prospects. Chem Soc Rev 40:3313–3335

    Article  Google Scholar 

  17. Tanabe Y, Sugano S (1954) On the absorption spectra of complex ions. I. J Phys Soc Jpn 9:753–766

    Article  ADS  Google Scholar 

  18. Spiering H, Meissner E, Köppen H, Müller EW, Gütlich P (1982) The effect of the lattice expansion on high spin-low spin transitions. Chem Phys 68:65–71

    Article  ADS  Google Scholar 

  19. Spiering H, Kohlhaas T, Romstedt H, Hauser A, Bruns-Yilmaz C, Kusz J, Gütlich P (1999) Correlations of the distribution of spin states in spin crossover compounds. Coord Chem Rev 190–192:629–647

    Article  Google Scholar 

  20. Gütlich P, Garcia Y, Goodwin H (2000) Spin crossover phenomena in Fe(II) complexes. Coord Chem Rev 29:419–427

    Google Scholar 

  21. Real JA, Gaspar AB, Muñoz MC (2005) Thermal, pressure and light switchable spin-crossover materials. Dalton Trans 2005:2062–2079

    Article  Google Scholar 

  22. Gaspar AB, Seredyuk M (2014) Iron catalysed nitrosation of olefins to oximes. Dalton Trans 43:38–41

    Article  Google Scholar 

  23. Buron-Le Cointe M, Hébert J, Baldé C, Moisan N, Toupet L, Guionneau P, Létard JF, Freysz E, Cailleau H, Collet E (2012) Intermolecular control of thermoswitching and photoswitching phenomena in two spin-crossover polymorphs. Phys Rev B 85:064114

    Article  ADS  Google Scholar 

  24. Nishino M, Miyashita S (2013) Effect of the short-range interaction on critical phenomena in elastic interaction systems. Phys Rev B 88:014108

    Article  ADS  Google Scholar 

  25. Chiruta D, Jureschi C-M, Linares J, Garcia Y, Rotaru A (2014) Lattice architecture effect on the cooperativity of spin transition coordination polymers. J Appl Phys 115:053523

    Article  ADS  Google Scholar 

  26. Gudyma I, Maksymov A, Enachescu C (2014) Phase transition in spin-crossover compounds in the breathing crystal field model. Phys Rev B 89:224412

    Article  ADS  Google Scholar 

  27. Avram NM, Brik MG (2013) Optical properties of 3d-ions in crystals: spectroscopy and crystal field analysis. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  28. Chergui M, Zewail AH (2009) Electron and X-Ray methods of ultrafast structural dynamics: advances and applications. ChemPhysChem 10:28–43

    Article  Google Scholar 

  29. Cailleau H, Lorenc M, Guérin M, Serrvol M, Collet E, Buron-Le Cointe M (2010) Structural dynamics of photoinduced molecular switching in the solid state. Acta Cryst A 66:189–197

    Article  Google Scholar 

  30. Elsaesser T, Woerner M (2014) Perspective: structural dynamics in condensed matter mapped by femtosecond x-ray diffraction. J Chem Phys 66:020901

    Article  Google Scholar 

  31. Ma H, Petersen JL, Young VG Jr, Yee GT, Jensen MP (2010) Solid-state spin crossover of Ni(II) in a bioinspired N 3 S 2 ligand field. J Am Chem Soc 133:5644–5647

    Article  Google Scholar 

  32. Chen L, Mowat JPS, Fairen-Jimenez D, Morrison CA, Thompson SP, Wright PA, Düren T (2013) Elucidating the breathing of the metal-organic framework MIL-53(Sc) with ab initio molecular dynamics simulations and in situ X-ray powder diffraction experiments. J Am Chem Soc 135:15763–15773

    Article  Google Scholar 

  33. Guionneau P (2014) Crystallography and spin-crossover. A view of breathing materials. Dalton Trans 43:382–393

    Article  Google Scholar 

  34. Sheveleva AM, Kolokolov DI, Gabrienko AA, Stepanov AG, Gromilov SA, Shundrina IK, Sagdeev RZ, Fedin MV, Bagryanskaya EG (2014) Structural dynamics in a “breathing” metal-organic framework studied by electron paramagnetic resonance of nitroxide spin probes. J Phys Chem Lett 5:20–24

    Article  Google Scholar 

  35. Boukheddaden K, Shteto I, Hoô B, Varret F (2000) Dynamical model for spin-crossover solids. I. Relaxation effects in the mean-field approach. Phys Rev B 62:14796–14805

    Article  ADS  Google Scholar 

  36. Miyashita S, Konishi Y, Nishino M, Tokoro H, Rikvold PA (2008) Realization of the mean-field, universality class in spin-crossover materials. Phys Rev B 77:014105

    Article  ADS  Google Scholar 

  37. Muraoka A, Boukheddaden K, Linarès J, Varret F (2011) Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: a Monte Carlo study. Phys Rev B 84:054119

    Article  ADS  Google Scholar 

  38. Chiruta D, Linares J, Dahoo PR, Dimian M (2012) Analysis of long-range interaction effects on phase transitions in two-step spincrossover chains by using Ising-type systems and Monte Carlo entropic sampling technique. J Appl Phys 112:074906

    Article  ADS  Google Scholar 

  39. Paez-Espejo M, Sy M, Varret F, Boukheddaden K (2014) Quantitative macroscopic treatment of the spatiotemporal properties of spin crossover solids based on a reaction diffusion equation. Phys Rev B 89:024306

    Article  ADS  Google Scholar 

  40. Pavlik J, Boča R (2013) Established static models of spin crossover. Eur J Inorg Chem, 2013:697–709

    Article  Google Scholar 

  41. Nakada T, Mori T, Miyashita S, Nishino M, Todo S, Nicolazzi W, Rikvold PA (2012) Critical temperature and correlation length of an elastic interaction model for spin-crossover materials. Phys Rev B 85:054408

    Article  ADS  Google Scholar 

  42. Enachescu C, Nishino M, Miyashita S, Stoleriu L, Stancu A (2012) Monte Carlo Metropolis study of cluster evolution in spin-crossover solids within the framework of a mechanoelastic model. Phys Rev B 86:054114

    Article  ADS  Google Scholar 

  43. Slimani A, Boukheddaden K, Varret F, Oubouchou H, Nishino M, Miyashita S (2013) Microscopic spin-distortion model for switchable molecular solids: spatiotemporal study of the deformation field and local stress at the thermal spin transition. Phys Rev B 87:014111

    Article  ADS  Google Scholar 

  44. Nishino M, Nakada T, Enachescu C, Boukheddaden K, Miyashita S (2013) Crossover of the roughness exponent for interface growth in systems with long-range interactions due to lattice distortion. Phys Rev B 88:094303

    Article  ADS  Google Scholar 

  45. Kambara T (1979) Theory of high-spin-low-spin transitions in transition metal compounds induced by the Jahn-Teller effect. J Chem Phys 70:4199

    Article  ADS  Google Scholar 

  46. Gudyma AIu, Gudyma IuV (2010) Noise-induced collective regimes of complex system in contact with a random reservoir. Physica A 389:667–672

    Article  ADS  Google Scholar 

  47. San Miguel M, Toral R (2000) Stochastic effects in physical systems. In: Tirapegui E, Martínez J, Tiemann R (eds) Instabilities and nonequilibrium structures VI. Kluwer Academic, Dordrecht, pp 35–130

    Chapter  Google Scholar 

  48. Gudyma Iu, Maksymov A (2011) High spin metastable state relaxation of spin-crossover solids driven by white noise. J Phys Chem Solids 72:73–77

    Article  ADS  Google Scholar 

  49. Volatron F, Catala L, Rivière E, Gloter A, Stéphan O, Mallah T (2008) Spin-crossover coordination nanoparticles. Inorg Chem 47:6584–6586

    Article  Google Scholar 

  50. Martínez V, Boldog I, Gaspar AB, Ksenofontov V, Bhattacharjee A, Gütlich P, Real JA (2010) Spin crossover phenomenon in nanocrystals and nanoparticles of [Fe(3-Fpy)2M(CN)4](MII=Ni, Pd, Pt) Two-dimensional coordination polymers. Chem Mater 22:4271–4281

    Article  Google Scholar 

  51. Roubeau O (2012) Triazole-based one-dimensional spin-crossover coordination polymers. Chem Eur J 18:15230–15244

    Article  Google Scholar 

  52. Shepherd HJ, Molnár G, Nicolazzi W, Salmon L, Bousseksou A (2013) Spin crossover at the nanometre scale. Eur J Inorg Chem 2013:653–661

    Article  Google Scholar 

  53. Mori T, Miyashita S, Rikvold PA (2010) Asymptotic forms and scaling properties of the relaxation time near threshold points in spinodal-type dynamical phase transitions. Phys Rev E 81:011135

    Article  ADS  Google Scholar 

  54. Gudyma Iu, Maksymov AI, Miyashita S (2011) Noise effects in a finite-size Ising-like model. Phys Rev E 84:031126

    Article  ADS  Google Scholar 

  55. Stoleriu L, Chakraborty P, Hauser A. Stancu A, Enachescu C (2011) Thermal hysteresis in spin-crossover compounds studied within the mechanoelastic model and its potential application to nanoparticles. Phys Rev B 84:134102

    Google Scholar 

  56. Félix G, Nicolazzi W, Salmon L, Molnár G, Perrier M, Maurin G, Larionova J, Long J, Guari Y, Bousseksou A (2011) Enhanced cooperative interactions at the nanoscale in spin-crossover materials with a first-order phase transition. Phys Rev Lett 84:134102

    Google Scholar 

  57. Kawamoto T, Abe S (2005) Thermal hysteresis loop of the spin-state in nanoparticles of transition metal complexes: Monte Carlo simulations on an Ising-like model. Chem Commun 2005:3933–3935

    Article  Google Scholar 

  58. Newman MEJ, Barkema GT (1999) Monte Carlo methods in statistical physics. Oxford University Press, Oxford

    Google Scholar 

  59. Miyashita S, Rikvold PA, Mori T, Konishi Y, Nishino M, Tokoro H (2009) Threshold phenomena under photoexcitation of spin-crossover materials with cooperativity due to elastic interactions. Phys Rev B 80:064414

    Article  ADS  Google Scholar 

  60. Atitoaie A, Tanasa R, Enachescu C (2012) Size dependent thermal hysteresis in spin crossover nanoparticles reflected within a Monte Carlo based Ising-like model. J Mag Mag Mater 324:1596–1600

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of AIu is supported in part by the Ministry of Science and Education of Ukraine under grant No. 0113U003249.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iu. Gudyma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gudyma, I., Maksymov, A., Ivashko, V. (2015). Spin-Crossover Nanocrystals and Ising Model. In: Fesenko, O., Yatsenko, L. (eds) Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies. Springer Proceedings in Physics, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-319-18543-9_10

Download citation

Publish with us

Policies and ethics