Skip to main content

Abstract

The centration of the treatment zone during corneal refractive procedures remains a topic of great dispute among refractive surgeons. Despite the benefits of a pupillary centration [1, 2], it is widely accepted that a centration in regard to the visual axis [3, 4] is the key to optimized visual outcomes while maintaining the functional corneal morphology after the treatment. The advent of eye trackers led to a significant reduction of extended decentrations and therefore to fewer functional deficits, such as reduced corrected distance visual acuity, irregular astigmatism, halos, glare [5], reduced contrast sensitivity [6], and monocular diplopia [7]. However, despite the efficacy of laser treatments based on eye-tracking systems, the problem of subclinical decentrations (<1.0 mm) and the induction of higher-order aberrations still remain [8].

Financial Disclosure 

The authors have no financial interest in any topics related to this study. Prof. Dr. med. Walter Sekundo is a member of the scientific board of Carl Zeiss Meditec AG

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uozato H, Guyton DL (1987) Centering corneal surgical procedures. Am J Ophthalmol 103:264–275

    CAS  PubMed  Google Scholar 

  2. Soler V, Benito A, Soler P et al (2011) A randomized comparison of pupil-centered versus vertex-centered ablation in LASIK correction of hyperopia. Am J Ophthalmol 152:591–599

    Article  PubMed  Google Scholar 

  3. Pande M, Hillman JS (1993) Optical zone centration in keratorefractive surgery: entrance pupil center, visual axis, coaxially sighted corneal reflex, or geometric corneal center? Ophthalmology 100:1230–1237

    Article  CAS  PubMed  Google Scholar 

  4. Reinstein DZ, Gobbe M, Archer TJ (2013) Coaxially sighted corneal light reflex versus entrance pupil center centration of moderate to high hyperopic corneal ablations in eyes with small and large angle kappa. J Refract Surg 29(8):518–525

    Article  PubMed  Google Scholar 

  5. Fay AM, Trokel SL, Myers JA (1992) Pupil diameter and the principal ray. J Cataract Refract Surg 18(4):348–351

    Article  CAS  PubMed  Google Scholar 

  6. Terrell J, Bechara SJ, Nesburn A, Waring GO, Macy J, Maloney RK (1995) The effect of globe fixation on ablation zone centration in photorefractive keratectomy. Am J Ophthalmol 119(5):612–619

    Article  CAS  PubMed  Google Scholar 

  7. Mulhern MG, Foley-Nolan A, O’Keefe M, Condon PI (1997) Topographical analysis of ablation centration after excimer laser photorefractive keratectomy and laser in situ keratomileusis for high myopia. J Cataract Refract Surg 23(4):488–494

    Article  CAS  PubMed  Google Scholar 

  8. Mrochen M, Kaemmerer M, Mierdel P, Seiler T (2001) Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration. J Cataract Refract Surg 27(3):362–369

    Article  CAS  PubMed  Google Scholar 

  9. Sekundo W, Kunert K, Russmann C, Gille A, Bissmann W, Stobrawa G, Sticker M, Bischoff M, Blum M (2008) First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results. J Cataract Refract Surg 34(9):1513–1520

    Article  PubMed  Google Scholar 

  10. Blum M, Kunert K, Schröder M, Sekundo W (2010) Femtosecond lenticule extraction for the correction of myopia: preliminary 6-month results. Graefes Arch Clin Exp Ophthalmol 248(7):1019–1027

    Article  PubMed  Google Scholar 

  11. Sekundo W, Kunert KS, Blum M (2011) Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: results of a 6 month prospective study. Br J Ophthalmol 95(3):335–339

    Article  PubMed  Google Scholar 

  12. Arbelaez MC, Vidal C, Arba-Mosquera S (2008) Clinical outcomes of corneal vertex versus central pupil references with aberration-free ablation strategies and LASIK. Invest Ophthalmol Vis Sci 49(12):5287–5294

    Article  PubMed  Google Scholar 

  13. Mastropasqua L, Toto L, Zuppardi E, Nubile M, Carpineto P, Di Nicola M, Ballone E (2006) Photorefractive keratectomy with aspheric profile of ablation versus conventional photorefractive keratectomy for myopia correction: six-month controlled clinical trial. J Cataract Refract Surg 32(1):109–116

    Article  PubMed  Google Scholar 

  14. Yang Y, Thompson K, Burns S (2002) Pupil location under mesopic, photopic and pharmacologically dilated conditions. Invest Ophthalmol Vis Sci 43(7):2508–2512

    PubMed Central  PubMed  Google Scholar 

  15. Qazi MA, Pepose JS, Sanderson JP, Mahmoud AM, Roberts CJ (2009) Novel objective method for comparing ablation centration with and without pupil tracking following myopic laser in situ keratomileusis using the bausch & lomb technolas 217A. Cornea 28(6):616–625

    Article  PubMed  Google Scholar 

  16. Bueeler M, Mrochen M (2004) Limitations of pupil tracking in refractive surgery: systematic error in determination of corneal locations. J Refract Surg 20(4):371–378

    PubMed  Google Scholar 

  17. Kermani O, Oberheide U, Schmiedt K, Gerten G, Bains HS (2009) Outcomes of hyperopic LASIK with the NIDEK NAVEX platform centered on the visual axis or line of sight. J Refract Surg 25:98–103

    Google Scholar 

  18. de Ortueta D, ArbaMosquera S (2007) Centration during hyperopic LASIK using the coaxial light reflex. J Refract Surg 23(1):11

    PubMed  Google Scholar 

  19. Park CY, Oh SY, Chuck RS (2012) Measurement of angle kappa and centration in refractive surgery. Curr Opin Ophthalmol 23(4):269–275

    Article  PubMed  Google Scholar 

  20. Tabernero J, Benito A, Alcon E, Artal P (2007) Mechanism of compensation of aberrations in the human eye. J Opt Soc Am A Opt Image Sci Vis 24(10):3274–3283

    Article  PubMed  Google Scholar 

  21. Basmak H, Sahin A, Yildirim N, Papakostas TD, Kanellopoulos AJ (2007) Measurement of angle kappa with synoptophore and Orbscan II in normal population. J Refract Surg 23(5):456–460

    PubMed  Google Scholar 

  22. Von Noorden G, Campos E (2002) Examination of the patient II. In: Binocular vision and ocular motility-theory and management of strabismus, 6th edn. Mosby, St. Louis, pp 168–173

    Google Scholar 

  23. Scott WE, Mash AJ (1973) Kappa angle measures of strabismic and nonstrabismic individuals. Arch Ophthalmol 89(1):18–20

    Article  CAS  PubMed  Google Scholar 

  24. Mandell RB, Chiang CS, Klein SA (1995) Location of the major corneal reference points. Optom Vis Sci 72(11):776–784

    Article  CAS  PubMed  Google Scholar 

  25. Xu J, Bao J, Lu F, He JC (2012) An indirect method to compare the reference centres for corneal measurements. Ophthalmic Physiol Opt 32(2):125–132

    Article  PubMed  Google Scholar 

  26. Lazaridis A, Droutsas K, Sekundo W (2014) Topographic analysis of the centration of the treatment zone after SMILE for myopia and comparison to FS-LASIK: subjective versus objective alignment. J Refract Surg 30(10):680–686

    Article  PubMed  Google Scholar 

  27. Deitz MR, Piebenga LW, Matta CS, Tauber J, Anello RD, DeLuca M (1996) Ablation zone centration after photorefractive keratectomy and its effect on visual outcome. J Cataract Refract Surg 22(6):696–701

    Article  CAS  PubMed  Google Scholar 

  28. Azar DT, Yeh PC (1997) Corneal topographic evaluation of decentration in photorefractive keratectomy: treatment displacement vs. intraoperative drift. Am J Ophthalmol 124(3):312–320

    Article  CAS  PubMed  Google Scholar 

  29. Lin DT, Sutton HF, Berman M (1993) Corneal topography following excimer photorefractive keratectomy for myopia. J Cataract Refract Surg 19(Suppl):149–154

    Article  PubMed  Google Scholar 

  30. Vinciguerra P, Randazzo A, Albè E, Epstein D (2007) Tangential topography corneal map to diagnose laser treatment decentration. J Refract Surg 23(9 Suppl):S1057–S1064

    PubMed  Google Scholar 

  31. Li M, Zhao J, Miao H, Shen Y, Sun L, Tian M, Wadium E, Zhou X (2014) Mild decentration measured by a Scheimpflug camera and its impact on visual quality following SMILE in the early learning curve. Invest Ophthalmol Vis Sci 55(6):3886–3892

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Lazaridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lazaridis, A., Sekundo, W. (2015). Centration in SMILE for Myopia. In: Sekundo, W. (eds) Small Incision Lenticule Extraction (SMILE). Springer, Cham. https://doi.org/10.1007/978-3-319-18530-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18530-9_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18529-3

  • Online ISBN: 978-3-319-18530-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics