Skip to main content

The Key Characteristics of Corneal Refractive Surgery: Biomechanics, Spherical Aberration, and Corneal Sensitivity After SMILE

  • Chapter
Small Incision Lenticule Extraction (SMILE)

Abstract

One of the potential benefits of the SMILE procedure is increased biomechanical stability due to the absence of a flap. There are two main reasons for this:

Financial Disclosure

Dr Reinstein is a consultant for Carl Zeiss Meditec (Jena, Germany) and has a proprietary interest in the Artemis technology (ArcScan Inc., Morrison, Colorado) and is an author of patents related to VHF digital ultrasound administered by the Cornell Center for Technology Enterprise and Commercialization (CCTEC), Ithaca, New York. The remaining authors have no proprietary or financial interest in the materials presented herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reinstein DZ, Silverman RH, Raevsky T, Simoni GJ, Lloyd HO, Najafi DJ, Rondeau MJ, Coleman DJ (2000) Arc-scanning very high-frequency digital ultrasound for 3D pachymetric mapping of the corneal epithelium and stroma in laser in situ keratomileusis. J Refract Surg 16(4):414–430

    CAS  PubMed  Google Scholar 

  2. Dupps WJ Jr, Roberts C (2001) Effect of acute biomechanical changes on corneal curvature after photokeratectomy. J Refract Surg 17(6):658–669

    PubMed  Google Scholar 

  3. Dupps WJ, Roberts C, Schoessler JP (1995) Peripheral lamellar relaxation. Paper presented at the ARVO 1995, Fort Lauderdale

    Google Scholar 

  4. Roberts C (2000) The cornea is not a piece of plastic. J Refract Surg 16(4):407–413

    CAS  PubMed  Google Scholar 

  5. Knox Cartwright NE, Tyrer JR, Jaycock PD, Marshall J (2012) Effects of variation in depth and side cut angulations in LASIK and thin-flap LASIK using a femtosecond laser: a biomechanical study. J Refract Surg 28(6):419–425. doi:10.3928/1081597x-20120518-07

    Article  PubMed  Google Scholar 

  6. Medeiros FW, Sinha-Roy A, Alves MR, Dupps WJ Jr (2011) Biomechanical corneal changes induced by different flap thickness created by femtosecond laser. Clinics (Sao Paulo) 66(6):1067–1071

    Article  Google Scholar 

  7. Randleman JB, Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF (2008) Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg 24(1):S85–S89

    PubMed  Google Scholar 

  8. MacRae S, Rich L, Phillips D, Bedrossian R (1989) Diurnal variation in vision after radial keratotomy. Am J Ophthalmol 107(3):262–267

    Article  CAS  PubMed  Google Scholar 

  9. Maloney RK (1990) Effect of corneal hydration and intraocular pressure on keratometric power after experimental radial keratotomy. Ophthalmology 97(7):927–933

    Article  CAS  PubMed  Google Scholar 

  10. Muller LJ, Pels E, Vrensen GF (2001) The specific architecture of the anterior stroma accounts for maintenance of corneal curvature. Br J Ophthalmol 85(4):437–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ousley PJ, Terry MA (1996) Hydration effects on corneal topography. Arch Ophthalmol 114(2):181–185

    Article  CAS  PubMed  Google Scholar 

  12. Simon G, Ren Q (1994) Biomechanical behavior of the cornea and its response to radial keratotomy. J Refract Corneal Surg 10(3):343–351; discussion 351–346

    CAS  PubMed  Google Scholar 

  13. Simon G, Small RH, Ren Q, Parel JM (1993) Effect of corneal hydration on Goldmann applanation tonometry and corneal topography. Refract Corneal Surg 9(2):110–117

    CAS  PubMed  Google Scholar 

  14. Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE (2006) Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light. J Cataract Refract Surg 32(2):279–283. doi:10.1016/j.jcrs.2005.12.092

    Article  PubMed  Google Scholar 

  15. Scarcelli G, Pineda R, Yun SH (2012) Brillouin optical microscopy for corneal biomechanics. Invest Ophthalmol Vis Sci 53(1):185–190. doi:10.1167/iovs.11-8281

    Article  PubMed Central  PubMed  Google Scholar 

  16. Petsche SJ, Chernyak D, Martiz J, Levenston ME, Pinsky PM (2012) Depth-dependent transverse shear properties of the human corneal stroma. Invest Ophthalmol Vis Sci 53(2):873–880. doi:10.1167/iovs.11-8611

    Article  PubMed Central  PubMed  Google Scholar 

  17. Winkler M, Shoa G, Xie Y, Petsche SJ, Pinsky PM, Juhasz T, Brown DJ, Jester JV (2013) Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma. Invest Ophthalmol Vis Sci 54(12):7293–7301. doi:10.1167/iovs.13-13150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF (2008) Biomechanical and wound healing characteristics of corneas after excimer laser keratorefractive surgery: is there a difference between advanced surface ablation and sub-Bowman’s keratomileusis? J Refract Surg 24(1):S90–S96

    PubMed  Google Scholar 

  19. Roy AS, Dupps WJ Jr (2011) Patient-specific computational modeling of keratoconus progression and differential responses to collagen cross-linking. Invest Ophthalmol Vis Sci 52(12):9174–9187. doi:10.1167/iovs.11-7395

    Article  PubMed  Google Scholar 

  20. Patel S (1987) Refractive index of the mammalian cornea and its influence during pachometry. Ophthalmic Physiol Opt 7(4):503–506

    Article  CAS  PubMed  Google Scholar 

  21. Kolozsvari L, Nogradi A, Hopp B, Bor Z (2002) UV absorbance of the human cornea in the 240- to 400-nm range. Invest Ophthalmol Vis Sci 43(7):2165–2168

    PubMed  Google Scholar 

  22. Seiler T, Kriegerowski M, Schnoy N, Bende T (1990) Ablation rate of human corneal epithelium and Bowman’s layer with the excimer laser (193 nm). Refract Corneal Surg 6(2):99–102

    CAS  PubMed  Google Scholar 

  23. Huebscher HJ, Genth U, Seiler T (1996) Determination of excimer laser ablation rate of the human cornea using in vivo Scheimpflug videography. Invest Ophthalmol Vis Sci 37(1):42–46

    CAS  PubMed  Google Scholar 

  24. Reinstein DZ, Archer TJ, Randleman JB (2013) Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction. J Refract Surg 29(7):454–460. doi:10.3928/1081597x-20130617-03

    Article  PubMed  Google Scholar 

  25. Schmack I, Dawson DG, McCarey BE, Waring GO 3rd, Grossniklaus HE, Edelhauser HF (2005) Cohesive tensile strength of human LASIK wounds with histologic, ultrastructural, and clinical correlations. J Refract Surg 21(5):433–445

    PubMed  Google Scholar 

  26. Seiler T, Matallana M, Sendler S, Bende T (1992) Does Bowman’s layer determine the biomechanical properties of the cornea? Refract Corneal Surg 8(2):139–142

    CAS  PubMed  Google Scholar 

  27. Sinha Roy A, Dupps WJ, Jr., Roberts CJ (2014) Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: finite-element analysis. J Cataract Refract Surg. 40:971–980

    Google Scholar 

  28. Shen Y, Chen Z, Knorz MC, Li M, Zhao J, Zhou X (2014) Comparison of corneal deformation parameters after SMILE, LASEK, and femtosecond laser-assisted LASIK. J Refract Surg. 30(5):310–318

    Article  PubMed  Google Scholar 

  29. Reinstein DZ, Archer TJ, Gobbe M (2011) LASIK for myopic astigmatism and presbyopia using non-linear aspheric micro-monovision with the carl zeiss meditec MEL 80 platform. J Refract Surg 27(1):23–37

    Article  PubMed  Google Scholar 

  30. Ganesh S, Gupta R (2014) Comparison of visual and refractive outcomes following femtosecond laser- assisted lasik with smile in patients with myopia or myopic astigmatism. J Refract Surg 30(9):590–596

    Article  PubMed  Google Scholar 

  31. Lin F, Xu Y, Yang Y (2014) Comparison of the visual results after SMILE and femtosecond laser-assisted LASIK for myopia. J Refract Surg 30(4):248–254. doi:10.3928/1081597x-20140320-03

    Article  PubMed  Google Scholar 

  32. Agca A, Demirok A, Cankaya KI, Yasa D, Demircan A, Yildirim Y, Ozkaya A, Yilmaz OF (2014) Comparison of visual acuity and higher-order aberrations after femtosecond lenticule extraction and small-incision lenticule extraction. Cont Lens Anterior Eye. doi:10.1016/j.clae.2014.03.001

    Google Scholar 

  33. Reinstein DZ, Archer TJ, Gobbe M (2014) ReLEx SMILE induces significantly less spherical aberration than wavefront optimised sub-Bowman’s LASIK for any given residual postoperative relative tensile strength. Paper presented at the ARVO 2014, Orlando

    Google Scholar 

  34. Vestergaard AH, Grauslund J, Ivarsen AR, Hjortdal JO (2014) Central corneal sublayer pachymetry and biomechanical properties after refractive femtosecond lenticule extraction. J Refract Surg 30(2):102–108. doi:10.3928/1081597x-20140120-05

    Article  PubMed  Google Scholar 

  35. Agca A, Ozgurhan EB, Demirok A, Bozkurt E, Celik U, Ozkaya A, Cankaya I, Yilmaz OF (2014) Comparison of corneal hysteresis and corneal resistance factor after small incision lenticule extraction and femtosecond laser-assisted LASIK: a prospective fellow eye study. Cont Lens Anterior Eye 37(2):77–80. doi:10.1016/j.clae.2013.05.003

    Article  PubMed  Google Scholar 

  36. Kamiya K, Shimizu K, Igarashi A, Kobashi H, Sato N, Ishii R (2014) Intraindividual comparison of changes in corneal biomechanical parameters after femtosecond lenticule extraction and small-incision lenticule extraction. J Cataract Refract Surg 40(6):963–970. doi:10.1016/j.jcrs.2013.12.013

    Article  PubMed  Google Scholar 

  37. Wu D, Wang Y, Zhang L, Wei S, Tang X (2014) Corneal biomechanical effects: Small-incision lenticule extraction versus femtosecond laser-assisted laser in situ keratomileusis. J Cataract Refract Surg 40(6):954–962. doi:10.1016/j.jcrs.2013.07.056

    Article  PubMed  Google Scholar 

  38. Wang D, Liu M, Chen Y, Zhang X, Xu Y, Wang J, To CH, Liu Q (2014) Differences in the corneal biomechanical changes after SMILE and LASIK. J Refract Surg 30(10):702–707. doi:10.3928/1081597x-20140903-09

    Article  PubMed  Google Scholar 

  39. Reinstein DZ, Gobbe M, Archer TJ (2011) Ocular biomechanics: measurement parameters and terminology. J Refract Surg 27(6):396–397

    Article  PubMed  Google Scholar 

  40. Goldich Y, Barkana Y, Morad Y, Hartstein M, Avni I, Zadok D (2009) Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?–a pilot study. Cornea 28(5):498–502

    Article  PubMed  Google Scholar 

  41. Touboul D, Roberts C, Kerautret J, Garra C, Maurice-Tison S, Saubusse E, Colin J (2008) Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry. J Cataract Refract Surg 34(4):616–622

    Article  PubMed  Google Scholar 

  42. Reinstein DZ, Archer TJ, Gobbe M (2013) Accuracy and reproducibility of cap thickness in small incision lenticule extraction. J Refract Surg 29(12):810–815. doi:10.3928/1081597x-20131023-02

    Article  PubMed  Google Scholar 

  43. Reinstein DZ, Archer TJ, Gobbe M (2014) Lenticule thickness readout for small incision lenticule extraction compared to artemis three-dimensional very high-frequency digital ultrasound stromal measurements. J Refract Surg 30(5):304–309

    Article  PubMed  Google Scholar 

  44. Reinstein DZ, Archer TJ, Gobbe M (2010) Corneal ablation depth readout of the MEL80 excimer laser compared to artemis three-dimensional very high-frequency digital ultrasound stromal measurements. J Refract Surg 26(12):949–959

    Article  PubMed  Google Scholar 

  45. Reinstein DZ, Archer TJ, Gobbe M, Silverman RH, Coleman DJ (2010) Repeatability of layered corneal pachymetry with the artemis very high-frequency digital ultrasound arc-scanner. J Refract Surg 26(9):646–659

    Article  PubMed Central  PubMed  Google Scholar 

  46. Reinstein DZ, Archer TJ, Gobbe M, Silverman R, Coleman DJ (2009) Stromal thickness in the normal cornea: three-dimensional display with artemis very high-frequency digital ultrasound. J Refract Surg 25(9):776–786

    Article  PubMed Central  PubMed  Google Scholar 

  47. He J, Bazan NG, Bazan HE (2010) Mapping the entire human corneal nerve architecture. Exp Eye Res 91(4):513–523. doi:10.1016/j.exer.2010.07.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Tuisku IS, Lindbohm N, Wilson SE, Tervo TM (2007) Dry eye and corneal sensitivity after high myopic LASIK. J Refract Surg 23(4):338–342

    PubMed  Google Scholar 

  49. Wilson SE (2001) Laser in situ keratomileusis-induced (presumed) neurotrophic epitheliopathy. Ophthalmology 108(6):1082–1087

    Article  CAS  PubMed  Google Scholar 

  50. Savini G, Barboni P, Zanini M, Tseng SC (2004) Ocular surface changes in laser in situ keratomileusis-induced neurotrophic epitheliopathy. J Refract Surg 20(6):803–809

    PubMed  Google Scholar 

  51. Solomon R, Donnenfeld ED, Perry HD (2004) The effects of LASIK on the ocular surface. Ocul Surf 2(1):34–44

    Article  PubMed  Google Scholar 

  52. Shtein RM (2011) Post-LASIK dry eye. Expert Rev Ophthalmol 6(5):575–582. doi:10.1586/eop.11.56

    Article  PubMed Central  PubMed  Google Scholar 

  53. Chao C, Golebiowski B, Stapleton F (2014) The role of corneal innervation in LASIK-induced neuropathic dry eye. Ocul Surf 12(1):32–45. doi:10.1016/j.jtos.2013.09.001

    Article  PubMed  Google Scholar 

  54. Reinstein DZ, Archer TJ, Gobbe M, Bartoli E (2014) Corneal sensitivity after small incision lenticule extraction (SMILE). J Cataract Refract Surg (in press)

    Google Scholar 

  55. Wei S, Wang Y (2013) Comparison of corneal sensitivity between FS-LASIK and femtosecond lenticule extraction (ReLEx flex) or small-incision lenticule extraction (ReLEx smile) for myopic eyes. Graefes Arch Clin Exp Ophthalmol 251(6):1645–1654. doi:10.1007/s00417-013-2272-0

    Article  PubMed  Google Scholar 

  56. Wei SS, Wang Y, Geng WL, Jin Y, Zuo T, Wang L, Wu D (2013) Early outcomes of corneal sensitivity changes after small incision lenticule extraction and femtosecond lenticule extraction. Zhonghua Yan Ke Za Zhi 49(4):299–304

    PubMed  Google Scholar 

  57. Vestergaard AH, Gronbech KT, Grauslund J, Ivarsen AR, Hjortdal JO (2013) Subbasal nerve morphology, corneal sensation, and tear film evaluation after refractive femtosecond laser lenticule extraction. Graefes Arch Clin Exp Ophthalmol 251(11):2591–2600. doi:10.1007/s00417-013-2400-x

    Article  PubMed  Google Scholar 

  58. Demirok A, Ozgurhan EB, Agca A, Kara N, Bozkurt E, Cankaya KI, Yilmaz OF (2013) Corneal sensation after corneal refractive surgery with small incision lenticule extraction. Optom Vis Sci 90(10):1040–1047. doi:10.1097/OPX.0b013e31829d9926

    Article  PubMed  Google Scholar 

  59. Li M, Zhao J, Shen Y, Li T, He L, Xu H, Yu Y, Zhou X (2013) Comparison of dry eye and corneal sensitivity between small incision lenticule extraction and femtosecond LASIK for myopia. PLoS One 8(10):e77797. doi:10.1371/journal.pone.0077797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Li M, Zhou Z, Shen Y, Knorz MC, Gong L, Zhou X (2014) Comparison of corneal sensation between small incision lenticule extraction (SMILE) and femtosecond laser-assisted LASIK for myopia. J Refract Surg 30(2):94–100. doi:10.3928/1081597x-20140120-04

    Article  PubMed  Google Scholar 

  61. Li M, Niu L, Qin B, Zhou Z, Ni K, Le Q, Xiang J, Wei A, Ma W, Zhou X (2013) Confocal comparison of corneal reinnervation after small incision lenticule extraction (SMILE) and femtosecond laser in situ keratomileusis (FS-LASIK). PLoS One 8(12), e81435. doi:10.1371/journal.pone.0081435

    Article  PubMed Central  PubMed  Google Scholar 

  62. Gao S, Li S, Liu L, Wang Y, Ding H, Li L, Zhong X (2014) Early changes in ocular surface and tear inflammatory mediators after small-incision lenticule extraction and femtosecond laser-assisted laser in situ keratomileusis. PLoS One 9(9), e107370. doi:10.1371/journal.pone.0107370

    Article  PubMed Central  PubMed  Google Scholar 

  63. Mohamed-Noriega K, Riau AK, Lwin NC, Chaurasia SS, Tan DT, Mehta JS (2014) Early corneal nerve damage and recovery following small incision lenticule extraction (SMILE) and laser in situ keratomileusis (LASIK). Invest Ophthalmol Vis Sci 55(3):1823–1834. doi:10.1167/iovs.13-13324

    Article  PubMed  Google Scholar 

  64. Xu Y, Yang Y (2014) Dry eye after small incision lenticule extraction and LASIK for myopia. J Refract Surg 30(3):186–190. doi:10.3928/1081597x-20140219-02

    Article  CAS  PubMed  Google Scholar 

  65. Pedersen IB, Bak-Nielsen S, Vestergaard AH, Ivarsen A, Hjortdal J (2014) Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry. Graefes Arch Clin Exp Ophthalmol 252(8):1329–1335

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Z. Reinstein MD, MA(Cantab), FRCOphth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reinstein, D.Z., Archer, T.J., Gobbe, M. (2015). The Key Characteristics of Corneal Refractive Surgery: Biomechanics, Spherical Aberration, and Corneal Sensitivity After SMILE. In: Sekundo, W. (eds) Small Incision Lenticule Extraction (SMILE). Springer, Cham. https://doi.org/10.1007/978-3-319-18530-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18530-9_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18529-3

  • Online ISBN: 978-3-319-18530-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics