Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 371 Accesses

Abstract

Many of the most exciting experiments in astroparticle physics like the search for proton decay (Perkins, Annu Rev Nucl Part Sci 34(1):1–50, (1984), [41]), the observation of neutrino oscillations (Mariani, Mod Phys Lett A 27(8):1230010, (2012) [39]) or the direct search for dark matter (Bertone (ed), Particle dark matter, (2010) [22]) require an event by event identification of a potentially very rare signal. The capability to efficiently reject background is therefore a central requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Barn (symbol b) is a unit of cross section area used in particle physics. One barn is equivalent to \({100}\,\mathrm{{fm}}^2=10^{-28}\,\mathrm{{m}}^2\).

  2. 2.

    Electronvolt (symbol eV) is a unit of energy used in particle physics. One electronvolt is the energy needed to move one elementary charge e against a potential difference of one volt, i.e. \(1\,\mathrm{{eV}} \approx 1.602\times 10^{-19}\,\mathrm{{J}}\).

References

  1. Aalseth CE et al [CoGeNT Collaboration] (2011) Results from a search for lightmass dark matter with a \(p\)-type point contact germanium detector. Phys Rev Lett 106(13):131301. doi:10.1103/PhysRevLett.106.131301. arXiv:1002.4703 [astro-ph]

  2. Agnese R et al [CDMS Collaboration] (2013) Dark matter search results using the silicon detectors of CDMS II. arXiv:1304.4279 [hep-ex]

  3. Agostinelli S et al [GEANT4 Collaboration] (2003) GEANT4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect A 506(3):250–303. doi:10.1016/S0168-9002(03)01368-8

  4. Ahmed Z et al [CDMS II Collaboration] (2010) Dark matter search results from the CDMS II experiment. Science 327(5973):1619–1621. doi:10.1126/science.1186112

  5. Ahmed Z et al [CDMS and EDELWEISS Collaborations] (2011) Combined limits on WIMPs from the CDMS and EDELWEISS experiments. Phys Rev D 84(1):011102. doi:10.1103/PhysRevD.84.011102. arXiv:1105.3377 [astro-ph.CO]

  6. Akerib DS et al [LUX Collaboration] (2013) First results from the LUX dark matter experiment at the Sanford Underground Research Facility. arXiv:1310.8214 [astro-ph.CO]

  7. Akimov D (2011) Techniques and results for the direct detection of dark matter (review). In: VCI 2010 - proceedings of the 12th international Vienna conference on instrumentation, special issue. Nucl Instrum Methods Phys Res Sect A 628(1):50–58. doi:10.1016/j.nima.2010.06.283

  8. Allison J et al (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53(1):270–278. doi:10.1109/TNS.2006.869826

    Article  ADS  Google Scholar 

  9. Angloher G et al (2012) Results from 730 kg days of the CRESST-II dark matter search. Eur Phys J C 72:1971. doi:10.1140/epjc/s10052-012-1971-8. arXiv:1109.0702

  10. Angloher G et al (2014) EURECA conceptual design report. Phys Dark Universe 3:41–74. doi:10.1016/j.dark.2014.03.004

    Article  ADS  Google Scholar 

  11. Aprile E et al [XENON100 Collaboration] (2012) Dark matter results from 225 live days of XENON100 data. Phys Rev Lett 109(18):181301. doi:10.1103/PhysRevLett.109.181301. arXiv:1207.5988 [astro-ph.CO]

  12. Araújo H et al (2005) Muon-induced neutron production and detection with GEANT4 and FLUKA. Nucl Instrum Methods Phys Res Sect A 545(1–2):398–411. doi:10.1016/j.nima.2005.02.004. arXiv:hep-ex/0411026

  13. Araújo H et al (2008) Measurements of neutrons produced by high-energy muons at the Boulby Underground Laboratory. Astropart Phys 29(6):471–481. doi:10.1016/j.astropartphys.2008.05.004

    Article  ADS  Google Scholar 

  14. Armengaud E et al [EDELWEISS Collaboration] (2011) Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes. Phys Lett B 702(5):329–335. doi:10.1016/j.physletb.2011.07.034. arXiv:1103.4070 [astro-ph.CO]

  15. Armengaud E et al [EDELWEISS Collaboration] (2013) Background studies for the EDELWEISS dark matter experiment. Astropart Phys 47(1–9):1. doi:10.1016/j.astropartphys.2013.05.004. arXiv:1305.3628 [physics.insdet]

  16. Arnaud Q [For the EDELWEISS Collaboration] (2014) The EDELWEISS experiment status. In: Augé E, Dumarchez J, Trân Thanh Vân J (eds) ARISF proceedings of the 49th RENCONTRES DE MORIOND. Cosmology, La Thuile, Aosta Valley, Italy, 22–29 March 2014, pp 175–178. http://moriond.in2p3.fr/Proceedings/2014/Moriond_Cosmo_2014.pdf

  17. Battistoni G et al (2007) The FLUKA code: description and benchmarking. In: Albrow M, Raja R (eds) Hadronic shower simulation workshop, Batavia, 6–8 September 2006. AIP conference proceedings, vol 896. AIP Publishing, Melville, pp 31–49. doi:10.1063/1.2720455

  18. Baudis L (2012) Direct dark matter detection: the next decade. Next decade in dark matter and dark energy, special issue. Phys Dark Universe 1(1–2):94–108. doi:10.1016/j.dark.2012.10.006. arXiv:1211.7222

  19. Bergamasco L (1970) Experimental results on the pion and neutron production by muons at 60 and 110 m w.e. Nuovo Cim B 66(1):120–128. doi:10.1007/BF02710194

  20. Bergamasco L, Costa S, Picchi P (1973) Experimental results on neutron production by muons at 4300 m w.e. Nuovo Cim A 13:403–412. doi:10.1007/BF02827344

    Article  ADS  Google Scholar 

  21. Bernabei R (2012) Dark matter particles in the galactic halo: DAMA/LIBRA results and perspectives. Ann Phys 524(9–10):497–506. doi:10.1002/andp.201200094

  22. Bertone G (ed) (2010) Particle dark matter. Observations models and searches. Cambridge University Press, Cambridge

    Google Scholar 

  23. Crouch MF, Sard RD (1952) The distribution of multiplicities of neutrons produced by cosmic-ray \(\mu \)-mesons captured in lead. Phys Rev (2nd ser) 85(1):120–129. doi:10.1103/PhysRev.85.120

    ADS  Google Scholar 

  24. Enss C (ed) (2005) Cryogenic particle detection, vol 99. Topics in applied physics. Springer, Berlin. doi:10.1007/b12169

  25. Ferrari A et al (2005) FLUKA: a multi-particle transport code. http://cdsweb.cern.ch/record/898301/files/CERN-2005-010.pdf

  26. Figueroa-Feliciano E (2011) Direct detection searches for WIMP dark matter. Prog Part Nucl Phys 66(3):661–673. doi:10.1016/j.ppnp.2011.01.003

    Article  ADS  Google Scholar 

  27. Formaggio JA, Martoff CJ (2004) Backgrounds to sensitive experiments underground. Annu Rev Nucl Part Sci 54:361–412. doi:10.1146/annurev.nucl.54.070103.181248

    Article  ADS  Google Scholar 

  28. Gaisser TK (1991) Cosmic rays and particle physics. 1. publ., repr. ed. Cambridge University Press, Cambridge

    Google Scholar 

  29. Gorshkov GV, Zyabkin VA (1968) Production of neutrons in Pb, Cd, Fe, and Al under the influence of cosmic-ray muons at a depth of 150 in water equivalent (trans: Adashko JG). Sov J Nucl Phys 7(4):470–474. Orig. pub. as Yad Fiz 7:770–777 [in Russian]

    Google Scholar 

  30. Gorshkov GV, Zyabkin VA (1971) Neutron production in Pb at a depth of 150 m w.e. under the influence of cosmic-radiation mesons traveling at large zenith angles (trans: Adashko JG). Sov J Nucl Phys 12(2):187–190. Orig. pub. as Yad Fiz 12:340–346 [in Russian]

    Google Scholar 

  31. Gorshkov GV, Zyabkin VA, Yakovlev RM (1974) Production of neutrons in Pb, Cd, Fe, and Al by high energy muons (trans: Adashko JG). Sov J Nucl Phys 18(1): 57–61. Orig. pub. as Yad Fiz (1973) 18:109–117 [in Russian]

    Google Scholar 

  32. Gorshkov GV, Zyabkin VA, Yakovlev RM (1971) Production of neutrons in Pb, Cd, Fe, and Al and fission of Pb nuclei by cosmic rays in the depth range 0–1000 m water equiv (trans: Robinson CS). Sov J Nucl Phys 13(4):450–452. Orig. pub. as Yad Fiz 13:791–796 [in Russian]

    Google Scholar 

  33. Griest K, Kamionkowski M (2000) Supersymmetric dark matter. Phys Rep 333–334:167–182. doi:10.1016/S0370-1573(00)00021-1

    Article  Google Scholar 

  34. Hoekstra H, Jain B (2008) Weak gravitational lensing and its cosmological applications. Annu Rev Nucl Part Sci 58(1):99–123. doi:10.1146/annurev.nucl.58.110707.171151

    Article  ADS  Google Scholar 

  35. Horn OM (2007) Simulations of the muon-induced neutron background of the EDELWEISS-II experiment for Dark Matter search. Scientific report FZKA 7391. Forschungszentrum Karlsruhe. http://bibliothek.fzk.de/zb/berichte/FZKA7391.pdf. Orig. pub. as PhD dissertation, Universität Karlsruhe (TH) http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007402

  36. Kudryavtsev V, Pandola L, Tomasello V (2008) Neutron- and muon-induced background in underground physics experiments. Eur Phys J A 36(2):171–180. doi:10.1140/epja/i2007-10539-6

    Article  ADS  Google Scholar 

  37. Lindote A et al (2009) Simulation of neutrons produced by high-energy muons underground. Astropart Phys 31:366–375. doi:10.1016/j.astropartphys.03.008. arXiv:0810.1682 [hep-ex]

  38. Mal’gin A, Ryazhskaya O (2008) Neutrons from muons underground. Phys At Nucl 71(10):1769–1781. doi:10.1134/S1063778808100116

    Article  Google Scholar 

  39. Mariani C (2012) Review of reactor neutrino oscillation experiments. Mod Phys Lett A 27(8):1230010. doi:10.1142/S0217732312300108. arXiv:1201. 6665 [hep-ex]

  40. Martin SP (2008) A supersymmetry primer. arXiv:hep-ph/9709356

  41. Perkins DH (1984) Proton decay experiments. Annu Rev Nucl Part Sci 34(1):1–50. doi:10.1146/annurev.ns.34.120184.000245

    Article  ADS  Google Scholar 

  42. Reichhart L et al (2013) Measurement and simulation of the muon-induced neutron yield in lead. Astropart Phys 47:67–76. doi:10.1016/j.astropartphys.2013.06.002. arXiv:1302.4275 [physics.ins-det]

  43. Samtleben D, Staggs S, Winstein B (2007) The cosmic microwave background for pedestrians: A review for particle and nuclear physicists. Annu Rev Nucl Part Sci 57(1):245–283. doi:10.1146/annurev.nucl.54.070103.181232

    Article  ADS  Google Scholar 

  44. Schmidt B et al [EDELWEISS Collaboration] (2013) Muon-induced background in the EDELWEISS dark matter search. Astropart Phys 44:28–39. doi:10.1016/j.astropartphys.2013.01.014. arXiv:1302.7112 [astro-ph.CO]

  45. Signer A (2009) ABC of SUSY. J Phys G Nucl Part Phys 36(7):073002. doi:10.1088/0954-3899/36/7/073002. arXiv:0905.4630 [hep-ph]

  46. Sofue Y ( 2012) A grand rotation curve and dark matter halo in the Milky Way galaxy. Publ Astron Soc Japan 64(4):75. arXiv:1110.4431 [astro-ph.GA]. http://www.ioa.s.u-tokyo.ac.jp/sofue/htdocs/2012DarkHalo/

  47. Treu T (2010) Strong lensing by galaxies. Annu Rev Astron Astrophys 48(1):87–125. doi:10.1146/annurev-astro-081309-130924

    Article  ADS  Google Scholar 

  48. Trimble V (1987) Existence and nature of dark matter in the universe. Annu Rev Astron Astrophys 25:425–472. doi:10.1146/annurev.aa.25.090187.002233

    Article  ADS  Google Scholar 

  49. Wang Y-F et al (2001) Predicting neutron production from cosmic-ray muons. Phys Rev D 64:013012. doi:10.1103/PhysRevD.64.013012. arXiv:hepex/0101049

  50. Wulandari H et al (2004) Neutron background studies for the CRESST dark matter experiment. arXiv:hep-ex/0401032v1

  51. Zbiri K (2010) Remark on the studies of the muon-induced neutron background in the liquid scintillator detectors. Nucl Instrum Methods Phys Res Sect A 615(2):220–222. doi:10.1016/j.nima.2010.01.035

    Article  ADS  Google Scholar 

  52. Zwicky F (1933) Die Rotverschiebung von extragalaktischen Nebeln [in German]. Helv Phys Acta 6(2):110–127. doi:10.5169/seals-110267

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Kluck .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kluck, H. (2015). Introduction. In: Production Yield of Muon-Induced Neutrons in Lead. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18527-9_1

Download citation

Publish with us

Policies and ethics