Skip to main content

The Higgs Boson in the Standard Model of Particle Physics

  • Chapter
  • First Online:
The Higgs Boson Discovery at the Large Hadron Collider

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 264))

  • 1755 Accesses

Abstract

The principle of gauge symmetries can be motivated by the Lagrangian density of the free Dirac field, which is covariant under.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in classical formulations \(D_{\mu }\) is sometimes introduced as \(D_{\mu }= \partial _{\mu }-ieA_{\mu }\). Here it will be introduced with a “\(+\)” sign to keep consistency with the canonical formulation of the SM later on.

  2. 2.

    Note that the book follows the convention to sum over re-appearing identical indices as in the case of the Einstein sum convention.

  3. 3.

    The additional index \(Y\) is tribute to the hypercharge \(Y\) in the covariant derivative.

  4. 4.

    The general usage of the variable name “\(e\)” for the elementary charge of the electron has been replaced by “\(q\)” in this and the following sections to prevent misunderstandings in cases, where “\(e\)” is used for other objects, e.g. like the electron spinor.

References

  1. C. Jensen, Controversy and Consensus: Nuclear Beta Decay 1911–1934 (Birkhäuser Verlag, Basel, 1992)

    Google Scholar 

  2. W. Pauli, Dear Radioactive Ladies and Gentlemen. Phys. Today 31N9 27(1978)

    Google Scholar 

  3. E. Fermi, Tentativo di una Teoria Dei Raggi. Il Nuovo Cimento 11(1), 1–19 (1934)

    Article  Google Scholar 

  4. S. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961)

    Article  Google Scholar 

  5. J. Goldstone, A. Salam, S. Weinberg, Broken symmetries. Phys. Rev. 127, 965–970 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the S-Matrix. Phys. Rev. D 10, 1145 (1974)

    Google Scholar 

  7. T. van Ritbergen, R.G. Stuart, On the precise determination of the fermi coupling constant from the Muon lifetime. Nucl. Phys. B 564, 343–390 (2000). arXiv:hep-ph/9904240

  8. Chin. Phys. C Review of particle physics. 38, 090001 (2014). doi:10.1088/1674-1137/38/9/090001

    Google Scholar 

  9. M. Veltman, Limit on mass differences in the Weinberg model. Nucl. Phys. B 123, 89 (1977)

    Google Scholar 

  10. P. Sikivie, L. Susskind, M.B. Voloshin et al., Isospin breaking in technicolor models. Nucl. Phys. B 173, 189 (1980)

    Google Scholar 

  11. S.L. Glashow, J. Iliopoulos, L. Maiani, Weak interactions with Lepton-Hadron symmetry. Phys. Rev. D2, 1285–1292 (1970)

    Google Scholar 

  12. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)

    Article  ADS  Google Scholar 

  13. G. ’t Hooft, M. Veltman, DIAGRAMMAR. NATO Sci. Ser. B4, 177–322 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Wolf .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wolf, R. (2015). The Higgs Boson in the Standard Model of Particle Physics. In: The Higgs Boson Discovery at the Large Hadron Collider. Springer Tracts in Modern Physics, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-319-18512-5_2

Download citation

Publish with us

Policies and ethics