Robust Stability Analysis for Families of Spherical Polynomials

  • Radek MatušůEmail author
  • Roman Prokop
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 348)


The families of spherical polynomials provide not very commonly utilized definition of uncertainty bounding set for systems with parametric uncertainty. The principal aim of this contribution is to present such spherical polynomial families, their description and related robust stability analysis. The illustrative example demonstrates an easy-to-use graphical method of robust stability investigation theoretically based on the value set concept and the zero exclusion condition and practically performed through the Polynomial Toolbox for Matlab.


Spherical Uncertainty Weighted Euclidean Norm Robust Stability Analysis Value Set Concept Zero Exclusion Condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barmish, B.R.: New Tools for Robustness of Linear Systems. Macmillan, New York (1994)zbMATHGoogle Scholar
  2. 2.
    Tesi, A., Vicino, A., Villoresi, F.: Robust Stability of Spherical Plants with Unstructured Uncertainty. In: Proceedings of the American Control Conference, Seattle, Washington, USA (1995)Google Scholar
  3. 3.
    Polyak, B.T., Shcherbakov, P.S.: Random Spherical Uncertainty in Estimation and Robustness. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia (2000)Google Scholar
  4. 4.
    Chen, J., Niculescu, S.-I., Fu, P.: Robust Stability of Quasi-Polynomials: Frequency-Sweeping Conditions and Vertex Tests. IEEE Transactions on Automatic Control 53(5), 1219–1234 (2008)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Hurák, Z., Šebek, M.: New Tools for Spherical Uncertain Systems in Polynomial Toolbox for Matlab. In: Proceedings of the Technical Computing Prague 2000, Prague, Czech Republic (2000)Google Scholar
  6. 6.
    PolyX: The Polynomial Toolbox,
  7. 7.
    Matušů, R.: Families of spherical polynomials: Description and robust stability analysis. In: Latest Trends on Systems (Volume II) – Proceedings of the 18th International Conference on Systems, Santorini, Greece, pp. 606–610 (2014)Google Scholar
  8. 8.
    Šebek, M.: Robustní řízení (Robust Control). PDF slides for course “Robust Control”, ČVUT Prague, or (in Czech)
  9. 9.
    Kharitonov, V.L.: Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. Differentsial’nye Uravneniya 14, 2086–2088 (1978)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Bhattacharyya, S.P., Chapellat, H., Keel, L.H.: Robust control: The parametric approach. Prentice Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  11. 11.
    Matušů, R., Prokop, R.: Graphical analysis of robust stability for systems with parametric uncertainty: an overview. Transactions of the Institute of Measurement and Control 33(2), 274–290 (2011)CrossRefGoogle Scholar
  12. 12.
    Soh, C.B., Berger, C.S., Dabke, K.P.: On the stability properties of polynomials with perturbed coefficients. IEEE Transactions on Automatic Control 30(10), 1033–1036 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Barmish, B.R., Tempo, R.: On the spectral set for a family of polynomials. IEEE Transactions on Automatic Control 36(1), 111–115 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Biernacki, R.M., Hwang, H., Bhattacharyya, S.P.: Robust stability with structured real parameter perturbations. IEEE Transactions on Automatic Control 32(6), 495–506 (1987)CrossRefMathSciNetGoogle Scholar
  15. 15.
    PolyX: The Polynomial Toolbox for Matlab – Upgrade Information for Version 2.5 (2001),

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Centre for Security, Information and Advanced Technologies (CEBIA – Tech), Faculty of Applied InformaticsTomas Bata University in ZlínZlínCzech Republic

Personalised recommendations