Simulation of Hybrid Fuzzy Adaptive Control of Pneumatic Muscle Actuator

  • Mária TóthováEmail author
  • Ján Pitel’
  • Alexander Hošovský
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 348)


The pneumatic muscle actuator is highly nonlinear system and it is difficult to control it using only a linear controller with fixed gains. The hybrid fuzzy adaptive control scheme with reference model was designed to control such actuator. It uses a multiplicative signal adaptation with a linear controller in the feedforward and a fuzzy controller in the adaptive feedback loop. In the paper there are presented some simulation results of this control. The nonlinear dynamic model of one-DOF actuator based on the advanced geometric muscle model was used in simulation.


pneumatic artificial muscle dynamic simulation hybrid control fuzzy control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Líška, O., More, M., Janáčová, D., Charvátová, H.: Design of Rehabilitation Robot Based on Pneumatic Artificial Muscles. In: Mathematical Methods and Optimization Techniques in Engineering, pp. 151–154. Europment, Antalya (2013)Google Scholar
  2. 2.
    Židek, K., Piteľ, J., Galajdová, A., Fodor, M.: Rehabilitation Device Construction Based on Artificial Muscle Actuators. In: Proceedings of the 9th IASTED International Conference: Biomedical Engineering, BioMed 2012, pp. 855–861. Iasted Press, Innsbruck (2012)Google Scholar
  3. 3.
    Židek, K., Šeminský, J.: Automated Rehabilitation Device Based on Artificial Muscles. In: Annals of DAAAM for 2011 & Proceedings of the 22nd International DAAAM Symposium “Intelligent Manufacturing & Automation: Power of Knowledge and Creativity”, pp. 1113–1114. DAAAM, Vienna (2011)Google Scholar
  4. 4.
    Hošovský, A., Havran, M.: Dynamic Modeling of One Degree of Freedom Pneumatic Muscle-Based Actuator for Industrial Applications. Tehnički Vjesnik 3/19, 673–681 (2012)Google Scholar
  5. 5.
    Tóthová, M., Piteľ, J., Mižáková, J.: Electro-Pneumatic Robot Actuator with Artificial Muscles and State Feedback. Applied Mechanics and Materials 460, 23–31 (2014)CrossRefGoogle Scholar
  6. 6.
    Straka, Ľ.: Operational Reliability of Mechatronic Equipment Based on Pneumatic Artificial Muscle. Applied Mechanics and Materials 460, 41–48 (2014)CrossRefGoogle Scholar
  7. 7.
    Boržíková, J., Balara, M.: Mathematical Model of Contraction Characteristics of the Artificial Muscle. Manufacturing Engineering 6(2), 26–29 (2007)Google Scholar
  8. 8.
    Sárosi, J.: Study on Viscoelastic Behaviour of Pneumatic Muscle Actuator. Annals of Faculty Engineering Hunedoara - International Journal of Engineering XII, 83–86 (2014)Google Scholar
  9. 9.
    Balara, M.: The Upgrade Methods of the Pneumatic Actuator Operation Ability. Applied Mechanics and Materials 308, 63–68 (2013)CrossRefGoogle Scholar
  10. 10.
    Kinsner, W., et al.: Challenges in Engineering Education of Cognitive Dynamic Systems. In: Proc. 2012 Canadian Engineering Education Association (CEEA 2012), pp. 1–12. University of Manitoba, Winnipeg (2012)Google Scholar
  11. 11.
    Sárosi, J.: Accurate Positioning of Pneumatic Artificial Muscle at Different Temperatures Using LabVIEW Based Sliding Mode Controller. In: Proceedings of the 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI 2014), pp. 85–89. IEEE Press, Timisoara (2014)CrossRefGoogle Scholar
  12. 12.
    Carbonell, P., Jiang, Z.P., Repperger, D.: Nonlinear Control of a Pneumatic Muscle Actuator: Backstepping vs. Sliding Mode. In: IEEE Conference on Control Applications, pp. 167–172. IEEE Press, Saint-Petersburg (2001)Google Scholar
  13. 13.
    Wang, Y., et al.: Study of Smooth and Accurate Position Controls of Pneumatic Artificial Muscle Actuators for Robotic Arms. Advanced Materials Research 317-319, 799–806 (2011)CrossRefGoogle Scholar
  14. 14.
    Ahn, K.K., Thanh, D.C., Ahn, Y.K.: Intelligent Switching Control of a Pneumatic Artificial Muscle Manipulator. JCME International Journal 48(4), 657–667 (2005)CrossRefGoogle Scholar
  15. 15.
    Balasaubramanian, K., Rattan, K.S.: Fuzzy Logic Control of a Pneumatic Muscle System Using a Linearizing Control Scheme. In: 22nd International Conference of North American Fuzzy Information Processing Society, Chicago, pp. 432–436 (2003)Google Scholar
  16. 16.
    Piteľ, J., Tóthová, M.: Operating Characteristics of Antagonistic Actuator with Pneumatic Artificial Muscles. Applied Mechanics and Materials 616, 101–109 (2014)CrossRefGoogle Scholar
  17. 17.
    Tóthová, M., Piteľ, J., Boržíková, J.: Operating Modes of Pneumatic Artificial Muscle Actuator. Applied Mechanics and Materials 308, 39–44 (2013)CrossRefGoogle Scholar
  18. 18.
    Piteľ, J., Balara, M., Boržíková, J.: Control of the Actuator with Pneumatic Artificial Muscles in Antagonistic Connection. Transactions of the VŠB – Technical University of Ostrava, LIII (2), 101–106 (2007)Google Scholar
  19. 19.
    Piteľ, J., Tóthová, M.: Design of Hybrid Adaptive Control of Antagonistic Pneumatic Muscle Actuator. In: 34th IASTED International Conference on Modeling, Innsbruck (in press, 2015)Google Scholar
  20. 20.
    Vagaská, A.: Mathematical Description and Static Characteristics of the Spring Actuator with Pneumatic Artificial Muscle. Applied Mechanics and Materials 460, 65–72 (2014)CrossRefGoogle Scholar
  21. 21.
    Tóthová, M., Piteľ, J.: Reference Model for Hybrid Adaptive Control of Pneumatic Muscle Actuator. In: 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI 2014), pp. 105–109. IEEE Press, Timisoara (2014)CrossRefGoogle Scholar
  22. 22.
    Hošovský, A., Michal, P., Tóthová, M., Biroš, O.: Fuzzy Adaptive Control for Pneumatic Muscle Actuator with Simulated Annealing Tuning. In: 12th IEEE International Symposium on Applied Machine Intelligence and Informatics (SAMI 2014), pp. 205–209. IEEE Press, Herľany (2014)CrossRefGoogle Scholar
  23. 23.
    Tóthová, M., Piteľ, J.: Dynamic Model of Pneumatic Actuator Based on Advanced Geometric Muscle Model. In: 9th International Conference on Computational Cybernetics (ICCC 2013), pp. 83–87. IEEE Press, Tihany (2013)Google Scholar
  24. 24.
    Tóthová, M., Piteľ, J.: Simulation of Actuator Dynamics Based on Geometric Model of Pneumatic Artificial Muscle. In: 11th International Symposium on Intelligent Systems and Informatics (SISY 2013), pp. 233–237. IEEE Press, Subotica (2013)CrossRefGoogle Scholar
  25. 25.
    Tóthová, M., Piteľ, J.: Dynamic Simulation of Pneumatic Muscle Actuator in Matlab/Simulink Environment. In: 12th IEEE International Symposium on Intelligent Systems and Informatics (SISY 2014), pp. 209–213. IEEE Press, Subotica (2014)CrossRefGoogle Scholar
  26. 26.
    Havran, M.: Computer Aided Control of Non-Conventional Actuator of Manipulators. Dissertation work, 136 p. Prešov (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mária Tóthová
    • 1
    Email author
  • Ján Pitel’
    • 1
  • Alexander Hošovský
    • 1
  1. 1.Faculty of Manufacturing Technologies, Department of Mathematics, Informatics and CyberneticsTechnical University of KošicePrešovSlovakia

Personalised recommendations