Heuristic Control of the Assembly Line

  • Bronislav ChramcovEmail author
  • Franciszek Marecki
  • Robert Bucki
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 348)


The paper highlights the mathematical model of the assembly process for the automated line as well as sequence control algorithms for the assembled version of objects. The automatic assembly line control requires numerical simulation. Minimizing the assembly time of all objects or maximizing the number of assembled objects within the given time are treated as optimization criteria. Specification of the robot assembly line is described in detail as well as the method of controlling the order of manufactured objects. The equations of state of an automatic assembly line are presented. The simulation model includes heuristic algorithms for control determining of the assembly line. The assembly process in a line can be modeled with different assumptions.


Modelling Computer Simulation Heuristic Algorithms Control Manufacturing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clarke, C.: Automotive Production Systems and Standardisation: From Ford to the Case of Mercedes-Benz. Physica-Verlag, Heidelberg (2005)Google Scholar
  2. 2.
    Lenstra, J.K., Kan, A.H.G.R., Brucker, P.: Complexity of Machine Scheduling Problems. Annals of Discrete Mathematics 1, 343–362 (1977)CrossRefGoogle Scholar
  3. 3.
    Lenstra, J.K., Kan, A.H.G.R.: Complexity of vehicle routing and scheduling problems. Networks 11, 221–227 (1981)CrossRefGoogle Scholar
  4. 4.
    Vasant, P.: Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance. IGI Global (2012)Google Scholar
  5. 5.
    Shi, R., Shangguan, C., Zhou, H.: Modeling and Evolutionary Optimization on Multilevel Production Scheduling: A Case Study. Applied Computational Intelligence and Soft Computing 2010, Article ID 781598, 14 pages (2010)Google Scholar
  6. 6.
    Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer (2004)Google Scholar
  7. 7.
    Niu, H., Tian, X.: An Approach to Optimize the Departure Times of Transit Vehicles with Strict Capacity Constraints. Mathematical Problems in Engineering 2013 (2013)Google Scholar
  8. 8.
    Mansini, R., Speranza, M.G.: Heuristic Algorithms for the Portfolio Selection Problem with Minimum Transaction Lots. European Journal of Operational Research 114 (1999)Google Scholar
  9. 9.
    Quan-Ke, P., Ponnuthurai, N.S., Chua, T.J., et al.: Solving manpower scheduling problem in manufacturing using mixed-integer programming with a two-stage heuristic algorithm. International Journal of Advanced Manufacturing Technology 46(9-12) (2010)Google Scholar
  10. 10.
    Georgilakis, P.S., Tsili, M.A., Souflaris, A.T.: A heuristic solution to the transformer manufacturing cost optimization problem. Journal of Materials Processing Technology 181(1-3) (2007)Google Scholar
  11. 11.
    Bensmaine, A., Dahane, M., Benyoucef, L.: A new heuristic for integrated process planning and scheduling in reconfigurable manufacturing systems. International Journal of Production Research 52(12) (2014)Google Scholar
  12. 12.
    Vanderkam, R.P.D., Wiersma, Y.F., King, D.J.: Heuristic algorithms vs. linear programs for designing efficient conservation reserve networks: valuation of solution optimality and processing time. Biological Conservation 137(3) (2007)Google Scholar
  13. 13.
    Horn, S., Weigert, G., Beier, E.: Heuristic optimization strategies for scheduling of manufacturing processes. In: 29th International Spring Seminar on Electronics Technology, pp. 228–233. IEEE (2006)Google Scholar
  14. 14.
    Shimizu, Y., Yamazaki, Y., Wada, T.: A Hybrid Meta-heuristic Method for Logistics Optimization Associated with Production Planning. In: 18th European Symposium on Computer Aided Process Engineering, vol. 25, pp. 301–306. Elsevier (2008)Google Scholar
  15. 15.
    Bankstona, J.B., Harnett, R.M.: An Heuristic Algorithm for a Multi-product, Single Machine Capacitated Production Scheduling Problem. Computers & Operations Research 27(1) (2000)Google Scholar
  16. 16.
    Modrak, V., Semanco, P., Kulpa, W.: Performance Measurement of Selected Heuristic Algorithms for Solving Scheduling Problems. In: 11th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 205–209. IEEE (2013)Google Scholar
  17. 17.
    Bucki, R., Marecki, F.: Digital Simulation of Discrete Processes. Network Integrators Associates, Parkland (2006)Google Scholar
  18. 18.
    Marecki, J.: Algorithms and Applications of Artificial Intelligence. Network Integrators Associates, Parkland (2011)Google Scholar
  19. 19.
    Xiong, H., Zhou, M., Caudill, R.: A Hybrid Heuristic Search Algorithm for Scheduling Flexible Manufacturing Systems. In: International Conference on Robotics and Automation 1996, vol. 3, pp. 2793–2797. IEEE (1996)Google Scholar
  20. 20.
    Muthukumaran, M., Muthu, S.: A Heuristic Scheduling Algorithm for Minimizing Makespanand Idle Time in a Nagare Cell. Advances in Mechanical Engineering 2012 (2012)Google Scholar
  21. 21.
    Zhang, R.: A Three-Stage Optimization Algorithm for the Stochastic Parallel Machine Scheduling Problem with Adjustable Production Rates. Discrete Dynamics in Nature and Society 2013 (2013)Google Scholar
  22. 22.
    Marecki, F.: Modele matematyczneialgorytmyalokacjioperacjiizasobównaliniimontażowej. ZN PolitechnikiŚląskiej, Gliwice (1986)Google Scholar
  23. 23.
    Marecki, J., Marecki, F.: Metodysztucznejinteligencji. WSIZ, Bielsko-Biała (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bronislav Chramcov
    • 1
    Email author
  • Franciszek Marecki
    • 2
  • Robert Bucki
    • 3
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlínZlínThe Czech Republic
  2. 2.Academy of Business in Dąbrowa GórniczaDąbrowa GórniczaPoland
  3. 3.Institute of Management and Information TechnologyBielsko-BiałaPoland

Personalised recommendations