A Virtual Simulation of the Image Based Self-navigation of Mobile Robots

  • Mateusz TecławEmail author
  • Piotr Lech
  • Krzysztof Okarma
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 348)


The paper concerns with the problem of fully visual self-navigation of mobile robots based on the analysis of similarity of images, acquired by the cameras mounted on the robot, with some previously captured images stored in a database. In order to simplify and speed-up the extraction of the necessary data from the image database it is assumed that the rough position of the robot is known e.g. based on the GPS module or some other sensors. Due to the application of the image analysis methods, the accuracy of the self-positioning of the robot can be significantly improved leading to fully visual self-navigation of autonomous mobile robots, assuming their continuous access to the image database. In order to verify the validity of the proposed approach, the virtual simulation environment based on the Simbad 3D robot simulator has been prepared. The initial results presented in the paper, obtained for synthetic images captured by the virtual robots, confirm the usefulness of the proposed approach being a good starting point for future experiments using the real images captured by the physical mobile robot also in various lighting conditions.


machine vision visual robot navigation mobile robots 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonon-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: A survey. Journal of Intelligent and Robotic Systems 53(3), 263–296 (2008)CrossRefGoogle Scholar
  2. 2.
    Chatterjee, A., Rakshit, A., Singh, N.N.: Vision Based Autonomous Robot Navigation – Algorithms and Implementations. SCI, vol. 455. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  3. 3.
    Desouza, G., Kak, A.: Vision for mobile robot navigation: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)CrossRefGoogle Scholar
  4. 4.
    Domek, S., Dworak, P., Grudziński, M., Okarma, K.: Calibration of cameras and fringe pattern projectors in the vision system for positioning of workpieces on the CNC machines. In: Gosiewski, Z., Kulesza, Z. (eds.) Mechatronic Systems and Materials V, Solid State Phenomena, vol. 199, pp. 229–234. Trans Tech Publications (2013)Google Scholar
  5. 5.
    Garcia, R., Nicosevici, T., Ridao, P., Ribas, D.: Towards a real-time vision-based navigation system for a small-class UUV. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 1, pp. 818–823 (2003)Google Scholar
  6. 6.
    Hugues, L., Bredeche, N.: Simbad: An autonomous robot simulation package for education and research. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 831–842. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Li, C., Bovik, A.: Three-component weighted structural similarity index. In: Proceedings of SPIE - Image Quality and System Performance VI, San Jose, California, vol. 7242, p. 72420Q (2009)Google Scholar
  8. 8.
    Okarma, K., Lech, P.: Monte carlo based algorithm for fast preliminary video analysis. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 790–799. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Okarma, K., Lech, P.: A fast image analysis technique for the line tracking robots. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 329–336. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Okarma, K., Tecław, M., Lech, P.: Application of super-resolution algorithms for the navigation of autonomous mobile robots. In: Choraś, R.S. (ed.) Image Processing & Communications Challenges 6. AISC, vol. 313, pp. 147–154. Springer, Heidelberg (2015)Google Scholar
  11. 11.
    Se, S., Lowe, D., Little, J.: Vision-based global localization and mapping for mobile robots. IEEE Transactions on Robotics 21(3), 364–375 (2005)CrossRefGoogle Scholar
  12. 12.
    Žujović, J., Pappas, T.N., Neuhoff, D.L.: Structural similarity metrics for texture analysis and retrieval. In: Proc. 16 th IEEE Int. Conf. Image Processing ICIP, pp. 2225–2228 (2009)Google Scholar
  13. 13.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: From error measurement to Structural Similarity. IEEE Trans. Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  14. 14.
    Wang, Z., Simoncelli, E., Bovik, A.: Multi-Scale Structural Similarity for image quality assessment. In: Proc. 37th IEEE Asilomar Conf. Signals, Systems and Computers, Pacific Grove, California (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Szczecin Faculty of Electrical Engineering, Department of Signal Processing and Multimedia EngineeringWest Pomeranian University of TechnologySzczecinPoland

Personalised recommendations