Skip to main content

Fucoidan from Fucus vesiculosus Fails to Improve Outcomes Following Intracerebral Hemorrhage in Mice

  • Chapter
Brain Edema XVI

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 121))

Abstract

Intracerebral hemorrhage (ICH) is the most fatal stroke subtype, with no effective therapies. Hematoma expansion and inflammation play major roles in the pathophysiology of ICH, contributing to primary and secondary brain injury, respectively. Fucoidan, a polysaccharide from the brown seaweed Fucus vesiculosus, has been reported to activate a platelet receptor that may function in limiting bleeding, and to exhibit anti-inflammatory effects. As such, the aim of the present study was to examine the effects of fucoidan on hemorrhaging and neurological outcomes after ICH. Male CD-1 mice were subjected to experimental ICH by infusion of bacterial collagenase. Animals were randomly divided into the following groups: sham, ICH + vehicle, ICH + 25 mg/kg fucoidan, ICH + 75 mg/kg fucoidan, and ICH + 100 mg/kg fucoidan. Brain water content, neurobehavioral outcomes, and hemoglobin content were evaluated at 24 h post ICH. Our findings show that fucoidan failed to attenuate the ICH-induced increase in BWC. The neurological deficits that result from ICH also did not differ in the treatment groups at all three doses. Finally, we found that fucoidan had no effect on the hemoglobin content after ICH. We postulate that fucoidan treatment did not improve the measured outcomes after ICH because we used crude fucoidan, which has a high molecular weight, in our study. High-molecular-weight fucoidans are reported to have less therapeutic potential than low molecular weight fucoidans. They have been shown to exhibit anti-coagulant and pro-apoptotic properties, which seem to outweigh their anti-inflammatory and potential procoagulant abilities. We propose that using a low-molecular-weight fucoidan, or fractionating the crude polysaccharide, may be effective in treating ICH. Future studies are needed to confirm this.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aisa Y, Miyakawa Y, Nakazato T, Shibata H, Saito K, Ikeda Y, Kizaki M (2005) Fucoidan induces apoptosis of human HS-sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways. Am J Hematol 78:7–14

    Article  CAS  PubMed  Google Scholar 

  2. Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD, Meyer AS (2011) Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int J Biol Macromol 49:331–336

    Article  CAS  PubMed  Google Scholar 

  3. Ale MT, Mikkelsen JD, Meyer AS (2011) Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar Drugs 9:2106–2130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Aronowski J, Zhao X (2011) Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 42:1781–1786

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bhatia KP, Marsden CD (1994) The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117:859–876

    Article  PubMed  Google Scholar 

  6. Boulaftali Y, Hess PR, Getz TM, Cholka A, Stolla M, Mackman N, Owens AP 3rd, Ware J, Kahn ML, Bergmeier W (2013) Platelet ITAM signaling is critical for vascular integrity in inflammation. J Clin Invest 123:908–916

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Chen J, Wang W, Zhang Q, Li F, Lei T, Luo D, Zhou H, Yang B (2013) Low molecular weight fucoidan against renal ischemia-reperfusion injury via inhibition of the MAPK signaling pathway. PLoS One 8, e56224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chen Q, Zhang J, Guo J, Tang J, Tao Y, Li L, Feng H, Chen Z (2014) Chronic hydrocephalus and perihematomal tissue injury developed in a rat model of intracerebral hemorrhage with ventricular extension. Transl Stroke Res 6:125–32

    Google Scholar 

  9. Chen S, Yang Q, Chen G, Zhang JH (2015) An update on inflammation in the acute phase of intracerebral hemorrhage. Transl Stroke Res 6:4–8

    Article  PubMed  Google Scholar 

  10. Cheng Y, Xi G, Jin H, Keep RF, Feng J, Hua Y (2014) Thrombin-induced cerebral hemorrhage: role of protease-activated receptor-1. Transl Stroke Res 5:472–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Cho ML, Lee BY, You SG (2010) Relationship between oversulfation and conformation of low and high molecular weight fucoidans and evaluation of their in vitro anticancer activity. Molecules 16:291–297

    Article  PubMed  Google Scholar 

  12. Choudhri TF, Hoh BL, Solomon RA, Connolly ES, Pinsky DJ (1997) Use of a spectrophotometric hemoglobin assay to objectively quantify intracerebral hemorrhage in mice. Stroke 28:2296–2302

    Article  CAS  PubMed  Google Scholar 

  13. Church FC, Meade JB, Treanor RE, Whinna HC (1989) Antithrombin activity of fucoidan. The interaction of fucoidan with heparin cofactor II, antithrombin III, and thrombin. J Biol Chem 264:3618–3623

    CAS  PubMed  Google Scholar 

  14. Counsell C, Sandercock P (1995) Use of anticoagulants in patients with acute ischemic stroke. Stroke 26:522–523

    Google Scholar 

  15. Cumashi A, Ushakova NA, Preobrazhenskaya ME, D'Incecco A, Piccoli A, Totani L, Tinari N, Morozevich GE, Berman AE, Bilan MI, Usov AI, Ustyuzhanina NE, Grachev AA, Sanderson CJ, Kelly M, Rabinovich GA, Iacobelli S, Nifantiev NE, Consorzio Interuniversitario Nazionale per la Bio-Oncologia, Italy (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17:541–552

    Article  CAS  PubMed  Google Scholar 

  16. Davis SM, Broderick J, Hennerici M, Brun NC, Diringer MN, Mayer SA, Begtrup K, Steiner T, Recombinant Activated Factor VIIIHTI (2006) Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 66:1175–1181

    Article  CAS  PubMed  Google Scholar 

  17. Elijovich L, Patel PV, Hemphill JC 3rd (2008) Intracerebral hemorrhage. Semin Neurol 28:657–667

    Article  PubMed  Google Scholar 

  18. Emiru T, Bershad EM, Zantek ND, Datta YH, Rao GH, Hartley EW, Divani AA (2013) Intracerebral hemorrhage: a review of coagulation function. Clin Appl Thromb Hemost 19:652–662

    Article  PubMed  Google Scholar 

  19. Frenette PS, Weiss L (2000) Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: evidence for selectin-dependent and independent mechanisms. Blood 96:2460–2468

    CAS  PubMed  Google Scholar 

  20. Garcia JH, Wagner S, Liu KF, Xj H (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats: statistical validation. Stroke 26:627–635

    Article  CAS  PubMed  Google Scholar 

  21. Grauffel V, Kloareg B, Mabeau S, Durand P, Jozefonvicz J (1989) New natural polysaccharides with potent antithrombic activity: fucans from brown algae. Biomaterials 10:363–368

    Article  CAS  PubMed  Google Scholar 

  22. Guo-Yuan Y, Betz AL, Thomas LC, James AB, Julian TH (1994) Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats. J Neurosurg 81:93–102

    Article  Google Scholar 

  23. Hlawaty H, Suffee N, Sutton A, Oudar O, Haddad O, Ollivier V, Laguillier-Morizot C, Gattegno L, Letourneur D, Charnaux N (2011) Low molecular weight fucoidan prevents intimal hyperplasia in rat injured thoracic aorta through the modulation of matrix metalloproteinase-2 expression. Biochem Pharmacol 81:233–243

    Article  CAS  PubMed  Google Scholar 

  24. Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G (2002) Behavioral tests after intracerebral hemorrhage in the rat. Stroke 33:2478–2484

    Article  PubMed  Google Scholar 

  25. Jang JY, Moon SY, Joo HG (2014) Differential effects of fucoidans with low and high molecular weight on the viability and function of spleen cells. Food Chem Toxicol 68:234–238

    Article  CAS  PubMed  Google Scholar 

  26. Jiao G, Yu G, Zhang J, Ewart HS (2011) Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9:196–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kim EJ, Park SY, Lee JY, Park JH (2010) Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol 10:96

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kim KJ, Yoon KY, Lee BY (2012) Low molecular weight fucoidan from the sporophyll of Undaria pinnatifida suppresses inflammation by promoting the inhibition of mitogen-activated protein kinases and oxidative stress in RAW264.7 cells. Fitoterapia 83:1628–1635

    Article  CAS  PubMed  Google Scholar 

  29. Krafft PR, Rolland WB, Duris K, Lekic T, Campbell A, Tang J, Zhang JH (2012) Modeling intracerebral hemorrhage in mice: injection of autologous blood or bacterial collagenase. J Vis Exp 67:e4289(electronic)

    Google Scholar 

  30. Kusaykin M, Bakunina I, Sova V, Ermakova S, Kuznetsova T, Besednova N, Zaporozhets T, Zvyagintseva T (2008) Structure, biological activity, and enzymatic transformation of fucoidans from the brown seaweeds. Biotechnol J 3:904–915

    Article  CAS  PubMed  Google Scholar 

  31. Kwak KW, Cho KS, Hahn OJ, Lee KH, Lee BY, Ko JJ, Chung KH (2010) Biological effects of fucoidan isolated from Fucus vesiculosus on thrombosis and vascular cells. Korean J Hematol 45:51–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lee H, Kim JS, Kim E (2012) Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways. PLoS One 7, e50624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Li C, Gao Y, Xing Y, Zhu H, Shen J, Tian J (2011) Fucoidan, a sulfated polysaccharide from brown algae, against myocardial ischemia-reperfusion injury in rats via regulating the inflammation response. Food Chem Toxicol 49:2090–2095

    Article  CAS  PubMed  Google Scholar 

  34. Li X, Zhao H, Wang Q, Liang H, Jiang X (2015) Fucoidan protects ARPE-19 cells from oxidative stress via normalization of reactive oxygen species generation through the Ca2 + -dependent ERK signaling pathway. Mol Med Rep 11:3746–3752

    CAS  PubMed  Google Scholar 

  35. Lim JD, Lee SR, Kim T, Jang SA, Kang SC, Koo HJ, Sohn E, Bak JP, Namkoong S, Kim HK, Song IS, Kim N, Sohn EH, Han J (2015) Fucoidan from Fucus vesiculosus protects against alcohol-induced liver damage by modulating inflammatory mediators in mice and HepG2 cells. Mar Drugs 13:1051–1067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ma Q, Manaenko A, Khatibi NH, Chen W, Zhang JH, Tang J (2011) Vascular adhesion protein-1 inhibition provides antiinflammatory protection after an intracerebral hemorrhagic stroke in mice. J Cereb Blood Flow Metab 31:881–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Manne BK, Getz TM, Hughes CE, Alshehri O, Dangelmaier C, Naik UP, Watson SP, Kunapuli SP (2013) Fucoidan is a novel platelet agonist for the C-type lectin-like receptor 2 (CLEC-2). J Biol Chem 288:7717–7726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Martin M, Conlon LW (2013) Does platelet transfusion improve outcomes in patients with spontaneous or traumatic intracerebral hemorrhage? Ann Emerg Med 61:58–61

    Article  PubMed  Google Scholar 

  39. Mauray S, Sternberg C, Theveniaux J, Millet J, Sinquin C, Tapon-Bretaudiere J, Fischer AM (1995) Venous antithrombotic and anticoagulant activities of a fucoidan fraction. Thromb Haemost 74:1280–1285

    CAS  PubMed  Google Scholar 

  40. May F, Hagedorn I, Pleines I, Bender M, Vogtle T, Eble J, Elvers M, Nieswandt B (2009) CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood 114:3464–3472

    Article  CAS  PubMed  Google Scholar 

  41. Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, Skolnick BE, Steiner T, Recombinant Activated Factor VIIIHTI (2005) Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med 352:777–785

    Article  CAS  PubMed  Google Scholar 

  42. Mourao P (2004) Use of sulfated fucans as anticoagulant and antithrombotic agents: future perspectives. Curr Pharm Des 10:967–981

    Article  CAS  PubMed  Google Scholar 

  43. Mourão P (1999) Searching for alternatives to heparin sulfated fucans from marine invertebrates. Trends Cardiovasc Med 9:225–232

    Article  PubMed  Google Scholar 

  44. Nieswandt B, Pleines I, Bender M (2011) Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J Thromb Haemost 9(Suppl 1):92–104

    Article  CAS  PubMed  Google Scholar 

  45. Nishino T, Aizu Y, Nagumo T (1991) The influence of sulfate content and molecular weight of a fucan sulfate from the brown seaweed Ecklonia kurome on its antithrombin activity. Thromb Res 64:723–731

    Article  CAS  PubMed  Google Scholar 

  46. Park HY, Han MH, Park C, Jin CY, Kim GY, Choi IW, Kim ND, Nam TJ, Kwon TK, Choi YH (2011) Anti-inflammatory effects of fucoidan through inhibition of NF-kappaB, MAPK and Akt activation in lipopolysaccharide-induced BV2 microglia cells. Food Chem Toxicol 49:1745–1752

    Article  CAS  PubMed  Google Scholar 

  47. Park SB, Chun KR, Kim JK, Suk K, Jung YM, Lee WH (2010) The differential effect of high and low molecular weight fucoidans on the severity of collagen-induced arthritis in mice. Phytother Res 24:1384–1391

    Article  CAS  PubMed  Google Scholar 

  48. Pomin VH, Pereira MS, Valente AP, Tollefsen DM, Pavao MS, Mourao PA (2005) Selective cleavage and anticoagulant activity of a sulfated fucan: stereospecific removal of a 2-sulfate ester from the polysaccharide by mild acid hydrolysis, preparation of oligosaccharides, and heparin cofactor II-dependent anticoagulant activity. Glycobiology 15:369–381

    Article  CAS  PubMed  Google Scholar 

  49. Qureshi AI, Mohammad YM, Yahia AM, Suarez JI, Siddiqui AM, Kirmani JF, Suri MF, Kolb J, Zaidat OO (2005) A prospective multicenter study to evaluate the feasibility and safety of aggressive antihypertensive treatment in patients with acute intracerebral hemorrhage. J Intensive Care Med 20:34–42

    Article  PubMed  Google Scholar 

  50. Raghavendran HR, Srinivasan P, Rekha S (2011) Immunomodulatory activity of fucoidan against aspirin-induced gastric mucosal damage in rats. Int Immunopharmacol 11:157–163

    Article  CAS  PubMed  Google Scholar 

  51. Rolland WB, Lekic T, Krafft PR, Hasegawa Y, Altay O, Hartman R, Ostrowski R, Manaenko A, Tang J, Zhang JH (2013) Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp Neurol 241:45–55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Schlunk F, Schulz E, Lauer A, Yigitkanli K, Pfeilschifter W, Steinmetz H, Lo EH, Foerch C (2014) Warfarin pretreatment reduces cell death and MMP-9 activity in experimental intracerebral hemorrhage. Transl Stroke Res 6:133–9

    Google Scholar 

  53. Su CY, Chen HM, Kwan AL, Lin YH, Guo NW (2007) Neuropsychological impairment after hemorrhagic stroke in basal ganglia. Arch Clin Neuropsychol 22:465–474

    Article  PubMed  Google Scholar 

  54. Suzuki-Inoue K, Fuller GL, Garcia A, Eble JA, Pohlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, Theakston RD, Schweighoffer E, Zitzmann N, Morita T, Tybulewicz VL, Ozaki Y, Watson SP (2006) A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107:542–549

    Article  CAS  PubMed  Google Scholar 

  55. Tanaka K, Ito M, Kodama M, Tomita M, Kimura S, Hoyano M, Mitsuma W, Hirono S, Hanawa H, Aizawa Y (2011) Sulfated polysaccharide fucoidan ameliorates experimental autoimmune myocarditis in rats. J Cardiovasc Pharmacol Ther 16:79–86

    CAS  PubMed  Google Scholar 

  56. Tang J, Liu J, Zhou C, Alexander JS, Nanda A, Granger DN, Zhang JH (2004) Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab 24:1133–1145

    Article  PubMed  Google Scholar 

  57. Teruya T, Tatemoto H, Konishi T, Tako M (2009) Structural characteristics and in vitro macrophage activation of acetyl fucoidan from Cladosiphon okamuranus. Glycoconj J 26:1019–1028

    Article  CAS  PubMed  Google Scholar 

  58. van Asch CJ, Oudendijk JF, Rinkel GJ, Klijn CJ (2010) Early intracerebral hematoma expansion after aneurysmal rupture. Stroke 41:2592–2595

    Article  PubMed  Google Scholar 

  59. Wang Y, Nie M, Lu Y, Wang R, Li J, Yang B, Xia M, Zhang H, Li X (2015) Fucoidan exerts protective effects against diabetic nephropathy related to spontaneous diabetes through the NF-kappaB signaling pathway in vivo and in vitro. Int J Mol Med 4(35):1067–1073

    Google Scholar 

  60. Xiong XY, Wang J, Qian ZM, Yang QW (2014) Iron and intracerebral hemorrhage: from mechanism to translation. Transl Stroke Res 5:429–441

    Article  CAS  PubMed  Google Scholar 

  61. Yamasaki-Miyamoto Y, Yamasaki M, Tachibana H, Yamada K (2009) Fucoidan induces apoptosis through activation of caspase-8 on human breast cancer MCF-7 cells. J Agric Food Chem 57:8677–8682

    Article  CAS  PubMed  Google Scholar 

  62. Yu X, Zhang Q, Cui W, Zeng Z, Yang W, Zhang C, Zhao H, Gao W, Wang X, Luo D (2014) Low molecular weight fucoidan alleviates cardiac dysfunction in diabetic Goto-Kakizaki rats by reducing oxidative stress and cardiomyocyte apoptosis. J Diabetes Res 2014:420929

    Article  PubMed Central  PubMed  Google Scholar 

  63. Zhang Z, Till S, Jiang C, Knappe S, Reutterer S, Scheiflinger F, Szabo CM, Dockal M (2014) Structure-activity relationship of the pro- and anticoagulant effects of Fucus vesiculosus fucoidan. Thromb Haemost 111:429–437

    Article  CAS  PubMed  Google Scholar 

  64. Zhao X, Sun G, Zhang H, Ting SM, Song S, Gonzales N, Aronowski J (2014) Polymorphonuclear neutrophil in brain parenchyma after experimental intracerebral hemorrhage. Transl Stroke Res 5:554–561

    Article  PubMed  Google Scholar 

  65. Zhu Z, Zhang Q, Chen L, Ren S, Xu P, Tang Y, Luo D (2010) Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation. Thromb Res 125:419–426

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflicts of interest.

Funding

This work was funded by National Institutes of Health grant NS082184 to JHZ and JT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiping Tang MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burchell, S.R., Iniaghe, L.O., Zhang, J.H., Tang, J. (2016). Fucoidan from Fucus vesiculosus Fails to Improve Outcomes Following Intracerebral Hemorrhage in Mice. In: Applegate, R., Chen, G., Feng, H., Zhang, J. (eds) Brain Edema XVI. Acta Neurochirurgica Supplement, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-18497-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18497-5_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18496-8

  • Online ISBN: 978-3-319-18497-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics