Skip to main content

Brain Volume Determination in Subarachnoid Hemorrhage Using Rats

  • Chapter
Brain Edema XVI

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 121))

Abstract

Brain edema is routinely measured using the wet-dry method. Volume, however, is the sum total of all cerebral tissues, including water. Therefore, volumetric change following injury may not be adequately quantified using percentage of edema. We thus tested the hypothesis that dried brains can be reconstituted with water and then re-measured to determine the actual volume. Subarachnoid hemorrhage (SAH) was induced by endovascular perforation in adult male Sprague-Dawley rats (n = 30). Animals were euthanized at 24 and 72 h after evaluation of neurobehavior for determination of brain water content. Dried brains were thereafter reconstituted with equal parts of water (lost from brain edema) and centrifuged to remove air bubbles. The total volume was quantified using hydrostatic (underwater) physics principles that 1 ml water (mass) = 1 cm3 (volume). The amount of additional water needed to reach a preset level marked on 2-ml test tubes was added to that lost from brain edema, and from the brain itself, to determine the final volume. SAH significantly increased both brain water and volume while worsening neurological function in affected rats. Volumetric measurements demonstrated significant brain swelling after SAH, in addition to the brain edema approach. This modification of the “wet-dry” method permits brain volume determination using valuable post hoc dried brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keep RF, Hua Y, Xi G (2012) Brain water content. A misunderstood measurement? Transl Stroke Res 3:263–265

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hasegawa Y, Nakagawa T, Uekawa K, Ma M, Lin B, Kusaka H, Katayama T, Sueta D, Toyama K, Koibuchi N, Kim-Mitsuyama S (2014) Therapy with the combination of amlodipine and irbesartan has persistent preventative effects on stroke onset associated with BDNF preservation on cerebral vessels in hypertensive rats. Transl Stroke Res. doi:10.1007/s12975-014-0383-5

    PubMed  Google Scholar 

  3. Schlunk F, Schulz E, Lauer A, Yigitkanli K, Pfeilschifter W, Steinmetz H, Lo EH, Foerch C (2014) Warfarin pretreatment reduces cell death and MMP-9 activity in experimental intracerebral hemorrhage. Transl Stroke Res. doi:10.1007/s12975-014-0377-3

    PubMed  Google Scholar 

  4. Chen Q, Zhang J, Guo J, Tang J, Tao Y, Li L, Feng H, Chen Z (2014) Chronic hydrocephalus and perihematomal tissue injury developed in a rat model of intracerebral hemorrhage with ventricular extension. Transl Stroke Res. doi:10.1007/s12975-014-0367-5

    Google Scholar 

  5. Merali Z, Leung J, Mikulis D, Silver F, Kassner A (2015) Longitudinal assessment of Imatinib’s effect on the blood–brain barrier after ischemia/reperfusion injury with permeability MRI. Transl Stroke Res 6:39–49

    Article  CAS  PubMed  Google Scholar 

  6. Li Q, Khatibi N, Zhang JH (2014) Vascular neural network: the importance of vein drainage in stroke. Transl Stroke Res 5:163–166

    Article  PubMed Central  PubMed  Google Scholar 

  7. Jayakumar AR, Valdes V, Tong XY, Shamaladevi N, Gonzalez W, Norenberg MD (2014) Sulfonylurea receptor 1 contributes to the astrocyte swelling and brain edema in acute liver failure. Transl Stroke Res 5:28–37

    Article  CAS  PubMed  Google Scholar 

  8. Hoda MN, Bhatia K, Hafez SS, Johnson MH, Siddiqui S, Ergul A, Zaidi SK, Fagan SC, Hess DC (2014) Remote ischemic perconditioning is effective after embolic stroke in ovariectomized female mice. Transl Stroke Res 5:484–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Khanna A, Kahle KT, Walcott BP, Gerzanich V, Simard JM (2014) Disruption of ion homeostasis in the neurogliovascular unit underlies the pathogenesis of ischemic cerebral edema. Transl Stroke Res 5:3–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ford AL, An H, Kong L, Zhu H, Vo KD, Powers WJ, Lin W, Lee JM (2014) Clinically relevant reperfusion in acute ischemic stroke: MTT performs better than Tmax and TTP. Transl Stroke Res 5:415–421

    Article  PubMed Central  PubMed  Google Scholar 

  11. Sun D, Kahle KT (2014) Dysregulation of diverse ion transport pathways controlling cell volume homeostasis contribute to neuroglial cell injury following ischemic stroke. Transl Stroke Res 5:1–2

    Article  PubMed Central  PubMed  Google Scholar 

  12. Song M, Yu SP (2014) Ionic regulation of cell volume changes and cell death after ischemic stroke. Transl Stroke Res 5:17–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Betz AL, Keep RF, Beer ME, Ren XD (1994) Blood–brain barrier permeability and brain concentration of sodium, potassium, and chloride during focal ischemia. J Cereb Blood Flow Metab 14:29–37

    Article  CAS  PubMed  Google Scholar 

  14. Adachi M, Feigin I (1966) Cerebral oedema and the water content of normal white matter. J Neurol Neurosurg Psychiatry 29:446–450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Minamisawa H, Terashi A, Katayama Y, Kanda Y, Shimizu J, Shiratori T, Inamura K, Kaseki H, Yoshino Y (1988) Brain eicosanoid levels in spontaneously hypertensive rats after ischemia with reperfusion: leukotriene C4 as a possible cause of cerebral edema. Stroke 19:372–377

    Article  CAS  PubMed  Google Scholar 

  16. Yang GY, Betz AL, Chenevert TL, Brunberg JA, Hoff JT (1994) Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood- brain barrier permeability in rats. J Neurosurg 81:93–102

    Article  CAS  PubMed  Google Scholar 

  17. Faas FH, Ommaya AK (1968) Brain tissue electrolytes and water content in experimental concussion in the monkey. J Neurosurg 28:137–144

    Article  CAS  PubMed  Google Scholar 

  18. Gerriets T, Stolz E, Walberer M, Muller C, Kluge A, Bachmann A, Fisher M, Kaps M, Bachmann G (2004) Noninvasive quantification of brain edema and the space-occupying effect in rat stroke models using magnetic resonance imaging. Stroke 35:566–571

    Article  CAS  PubMed  Google Scholar 

  19. Marmarou A, Poll W, Shulman K, Bhagavan H (1978) A simple gravimetric technique for measurement of cerebral edema. J Neurosurg 49:530–537

    Article  CAS  PubMed  Google Scholar 

  20. Marshall LF, Bruce DA, Graham DI, Langfitt TW (1976) Alterations in behavior, brain electrical activity, cerebral blood flow, and intracranial pressure produced by triethyl tin sulfate induced cerebral edema. Stroke 7:21–25

    Article  CAS  PubMed  Google Scholar 

  21. Nelson SR, Mantz ML, Maxwell JA (1971) Use of specific gravity in the measurement of cerebral edema. J Appl Physiol 30:268–271

    CAS  PubMed  Google Scholar 

  22. Tengvar C, Forssen M, Hultstrom D, Olsson Y, Pertoft H, Pettersson A (1982) Measurement of edema in the nervous system. Use of Percoll density gradients for determination of specific gravity in cerebral cortex and white matter under normal conditions and in experimental cytotoxic brain edema. Acta Neuropathol 57:143–150

    Article  CAS  PubMed  Google Scholar 

  23. Shohami E, Novikov M, Mechoulam R (1993) A nonpsychotropic cannabinoid, HU-211, has cerebroprotective effects after closed head injury in the rat. J Neurotrauma 10:109–119

    Article  CAS  PubMed  Google Scholar 

  24. Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM, Myers RE, Broderick JP, Brott TG (1996) Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter. Stroke 27:490–497

    Article  CAS  PubMed  Google Scholar 

  25. Sherchan P, Lekic T, Suzuki H, Hasegawa Y, Rolland W, Duris K, Zhan Y, Tang J, Zhang JH (2011) Minocycline improves functional outcomes, memory deficits, and histopathology after endovascular perforation-induced subarachnoid hemorrhage in rats. J Neurotrauma 28:2503–2512

    Article  PubMed Central  PubMed  Google Scholar 

  26. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26:627–634

    Article  CAS  PubMed  Google Scholar 

  27. Sugawara T, Jadhav V, Ayer R, Chen W, Suzuki H, Zhang JH (2009) Thrombin inhibition by argatroban ameliorates early brain injury and improves neurological outcomes after experimental subarachnoid hemorrhage in rats. Stroke 40:1530–1532

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lekic T, Hartman R, Rojas H, Manaenko A, Chen W, Ayer R, Tang J, Zhang JH (2010) Protective effect of melatonin upon neuropathology, striatal function, and memory ability after intracerebral hemorrhage in rats. J Neurotrauma 27:627–637

    Article  PubMed Central  PubMed  Google Scholar 

  29. Lekic T, Rolland W, Manaenko A, Krafft PR, Kamper JE, Suzuki H, Hartman RE, Tang J, Zhang JH (2013) Evaluation of the hematoma consequences, neurobehavioral profiles, and histopathology in a rat model of pontine hemorrhage. J Neurosurg 118:465–477

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lekic T, Rolland W, Hartman R, Kamper J, Suzuki H, Tang J, Zhang JH (2011) Characterization of the brain injury, neurobehavioral profiles, and histopathology in a rat model of cerebellar hemorrhage. Exp Neurol 227:96–103

    Article  PubMed Central  PubMed  Google Scholar 

  31. Tang J, Liu J, Zhou C, Ostanin D, Grisham MB, Neil Granger D, Zhang JH (2005) Role of NADPH oxidase in the brain injury of intracerebral hemorrhage. J Neurochem 94:1342–1350

    Article  CAS  PubMed  Google Scholar 

  32. Tso MK, Macdonald RL (2014) Subarachnoid hemorrhage: a review of experimental studies on the microcirculation and the neurovascular unit. Transl Stroke Res 5:174–189

    Article  PubMed  Google Scholar 

  33. Marbacher S, Nevzati E, Croci D, Erhardt S, Muroi C, Jakob SM, Fandino J (2014) The rabbit shunt model of subarachnoid haemorrhage. Transl Stroke Res 5:669–680

    Article  CAS  PubMed  Google Scholar 

  34. Pluta RM, Bacher J, Skopets B, Hoffmann V (2014) A non-human primate model of aneurismal subarachnoid hemorrhage (SAH). Transl Stroke Res 5:681–691

    Article  PubMed  Google Scholar 

  35. Zhang YP, Cai J, Shields LB, Liu N, Xu XM, Shields CB (2014) Traumatic brain injury using mouse models. Transl Stroke Res 5:454–471

    Article  PubMed  Google Scholar 

  36. Wada K, Makino H, Shimada K, Shikata F, Kuwabara A, Hashimoto T (2014) Translational research using a mouse model of intracranial aneurysm. Transl Stroke Res 5:248–251

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This study was partially supported by the National Institutes of Health grant RO1 NS078755 (Dr Zhang).

Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Zhang MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lekic, T., Hardy, M., Fujii, M., McBride, D.W., Zhang, J.H. (2016). Brain Volume Determination in Subarachnoid Hemorrhage Using Rats. In: Applegate, R., Chen, G., Feng, H., Zhang, J. (eds) Brain Edema XVI. Acta Neurochirurgica Supplement, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-18497-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18497-5_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18496-8

  • Online ISBN: 978-3-319-18497-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics