Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 925 Accesses

Abstract

This chapter explores the feasibility of g-C3N4 as a photocatalyst for hydrogen production from water. Graphitic carbon nitride was synthesised via thermal decomposition, using 4 different precursors, at various calcination temperatures, calcination ramp rates, cleaning techniques, and cocatalyst element/weighting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin, D. J. et al (2014). Highly efficient H2 evolution from water under visible light by structure-controlled graphitic carbon nitride. Angewandte Chemie International Edition, 53, 9240–9245.

    Google Scholar 

  2. Wang, X., et al. (2008). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8, 76–80.

    Article  Google Scholar 

  3. Yue, B., Li, Q., Iwai, H., Kako, T., & Ye, J. (2011). Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Science and Technology of Advanced Materials, 12, 034401.

    Article  Google Scholar 

  4. Jorge, A. B., et al. (2013). H2 and O2 Evolution from water half-splitting reactions by graphitic carbon nitride materials. The Journal of Physical Chemistry C, 117, 7178–7185.

    Article  CAS  Google Scholar 

  5. Ge, L., Han, C., Xiao, X., Guo, L. & Li, Y. (2014) Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts. Materials Research Bulletin, 48(4), 1447–1452.

    Google Scholar 

  6. Schwinghammer, K., et al. (2013). Triazine-based carbon nitrides for visible-light-driven hydrogen evolution. Angewandte Chemie International Edition, 52, 2435–2439.

    Article  CAS  Google Scholar 

  7. Xiang, Q., Yu, J., & Jaroniec, M. (2011). Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. The Journal of Physical Chemistry C, 115, 7355–7363.

    Article  CAS  Google Scholar 

  8. Wang, X., et al. (2009). Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. Journal of the American Chemical Society, 131, 1680–1681.

    Article  CAS  Google Scholar 

  9. Xu, J., Li, Y., Peng, S., Lu, G., & Li, S. (2013). Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea. Physical Chemistry Chemical Physics, 15, 7657–7665.

    Article  CAS  Google Scholar 

  10. Wang, Y., Zhang, J., Wang, X., Antonietti, M., & Li, H. (2010). Boron-and fluorine-containing mesoporous carbon nitride polymers: Metal-free catalysts for cyclohexane oxidation. Angewandte Chemie International Edition, 49, 3356–3359.

    Article  CAS  Google Scholar 

  11. Liu, G., et al. (2010). Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. Journal of the American Chemical Society, 132, 11642–11648.

    Article  CAS  Google Scholar 

  12. Li, K., Martin, D. J., & Tang, J. (2011). Conversion of solar energy to fuels by inorganic heterogeneous systems. Chinese Journal of Catalysis, 32, 879–890.

    Article  CAS  Google Scholar 

  13. Liebig, J. (1834). Ueber Einige Stickstoff-Verbindungen. Annalen der Pharmacie, 10, 1–47.

    Article  Google Scholar 

  14. Franklin, E. C. (1922). The ammono carbonic acids. Journal of the American Chemical Society, 44, 486–509.

    Article  CAS  Google Scholar 

  15. Pauling, L., & Sturdivant, J. H. (1937). The structure of cyameluric acid, hydromelonic acid and related substances. Proceedings of the National Academy of Sciences, 23, 615–620.

    Article  CAS  Google Scholar 

  16. Lotsch, B. V., et al. (2007). Unmasking melon by a complementary approach employing electron diffraction, solid-state nmr spectroscopy, and theoretical calculations—structural characterization of a carbon nitride polymer. Chemistry—A European Journal, 13, 4969–4980.

    Article  CAS  Google Scholar 

  17. Kroke, E., & Schwarz, M. (2004). Novel group 14 nitrides. Coordination Chemistry Reviews, 248, 493–532.

    Article  CAS  Google Scholar 

  18. Kroke, E., et al. (2002). Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New Journal of Chemistry, 26, 508–512.

    Article  CAS  Google Scholar 

  19. Dong, F., Sun, Y., Wu, L., Fu, M., & Wu, Z. (2012). Facile transformation of low cost thiourea into nitrogen-rich graphitic carbon nitride nanocatalyst with high visible light photocatalytic performance. Catalysis Science and Technology, 2, 1332–1335.

    Article  CAS  Google Scholar 

  20. Dong, F., et al. (2011). Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. Journal of Materials Chemistry, 21, 15171–15174.

    Article  CAS  Google Scholar 

  21. Bamwenda, G. R., Tsubota, S., Nakamura, T., & Haruta, M. (1995). Photoassisted hydrogen production from a water-ethanol solution: A comparison of activities of Au-TiO2 and Pt-TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 89, 177–189.

    Article  CAS  Google Scholar 

  22. Jun, Y.-S., et al. (2013). Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution. Angewandte Chemie International Edition, 52, 11083–11087.

    Article  CAS  Google Scholar 

  23. Jürgens, B., et al. (2003). Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by x-ray powder diffractometry, solid-state nmr, and theoretical studies. Journal of the American Chemical Society, 125, 10288–10300.

    Article  Google Scholar 

  24. Deifallah, M., McMillan, P. F., & Cora, F. (2008). Electronic and structural properties of two-dimensional carbon nitride graphenes. The Journal of Physical Chemistry C, 112, 5447–5453.

    Article  CAS  Google Scholar 

  25. Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61, 14095–14107.

    Article  CAS  Google Scholar 

  26. Ferrari, A. C., Rodil, S. E., & Robertson, J. (2003). Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Physical Review B, 67, 155306.

    Article  Google Scholar 

  27. Larkin, P. J., Makowski, M. P., & Colthup, N. B. (1999). The form of the normal modes of s-triazine: infrared and Raman spectral analysis and ab initio force field calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55, 1011–1020.

    Article  Google Scholar 

  28. González, J. F., Román, S., González-García, C. M., Nabais, J. V., & Ortiz, A. L. (2009). Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation. Industrial and Engineering Chemistry Research, 48, 7474–7481.

    Article  Google Scholar 

  29. Zhang, Y., Liu, J., Wu, G., & Chen, W. (2012). Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale, 4, 5300–5303.

    Article  CAS  Google Scholar 

  30. Zhang, Y., Thomas, A., Antonietti, M., & Wang, X. (2008). Activation of carbon nitride solids by protonation: Morphology changes, enhanced ionic conductivity, and photoconduction experiments. Journal of the American Chemical Society, 131, 50–51.

    Article  Google Scholar 

  31. Yamasita, D., Takata, T., Hara, M., Kondo, J. N., & Domen, K. (2004). Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics, 172, 591–595.

    Article  CAS  Google Scholar 

  32. Thomas, A., et al. (2008). Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 18, 4893–4908.

    Article  CAS  Google Scholar 

  33. Li, J., et al. (2012). A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chemical Communications, 48, 12017–12019.

    Article  CAS  Google Scholar 

  34. Reber, J. F., & Meier, K. (1984). Photochemical production of hydrogen with zinc sulfide suspensions. The Journal of Physical Chemistry, 88, 5903–5913.

    Article  CAS  Google Scholar 

  35. Matsumura, M., Saho, Y., & Tsubomura, H. (1983). Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. The Journal of Physical Chemistry, 87, 3807–3808.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David James Martin .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martin, D.J. (2015). Hydrogen Evolving Photocatalyst Development. In: Investigation into High Efficiency Visible Light Photocatalysts for Water Reduction and Oxidation. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18488-3_4

Download citation

Publish with us

Policies and ethics