Skip to main content

Abstract

In this chapter, our interest is focused on problems related to portfolio selection and that can still be formulated as LP or MILP models. The first part of the chapter is devoted to the portfolio rebalancing problem, where the investor already owns a portfolio of assets and, due to changed market conditions and possibly to the availability of additional capital, is interested in modifying it by selling/purchasing shares or amounts of some assets. We analyze all the aspects that, at least in practice, cannot be ignored when rebalancing, as the role played by transaction costs and the rebalancing frequency. The second part deals with the index tracking problem, that is the problem of selecting a set of assets that replicates as closely as possible the performance of a market index, while limiting the number of assets held in the portfolio and hence the associated transaction costs. When the goal is to exceed the performance of an index we talk about the enhanced index tracking problem. In this case, the investor aims at exceeding the index performance, possibly by a specified excess return. In this chapter, we provide mathematical formulations and discuss important modeling issues for both index and enhanced index tracking problems. At the end, we briefly analyze the case of long/short positions in portfolio holdings. Considering a portfolio optimization problem that includes long/short positions means to assume that the sign of the investment in an asset is not constrained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acerbi, C. 2002. Spectral measures of risk: A coherent representation of subjective risk aversion. Journal of Banking & Finance 26(7): 1505–1518.

    Google Scholar 

  • Adcock, C., and N. Meade. 1994. A simple algorithm to incorporate transactions costs in quadratic optimisation. European Journal of Operational Research 79(1): 85–94.

    Google Scholar 

  • Andersson, F., H. Mausser, D. Rosen, and S. Uryasev. 2001. Credit risk optimization with conditional value-at-risk criterion. Mathematical Programming 89(2): 273–291.

    Google Scholar 

  • Angelelli, E., R. Mansini, and M.G. Speranza. 2008. A comparison of MAD and CVaR models with real features. Journal of Banking & Finance 32(7): 1188–1197.

    Google Scholar 

  • Angelelli, E., R. Mansini, and M.G. Speranza. 2010. Kernel search: A general heuristic for the multi-dimensional knapsack problem. Computers & Operations Research 37(11): 2017–2026. Metaheuristics for Logistics and Vehicle Routing.

    Google Scholar 

  • Angelelli, E., R. Mansini, and M.G. Speranza. 2012. Kernel search: A new heuristic framework for portfolio selection. Computational Optimization and Applications 51(1): 345–361.

    Google Scholar 

  • Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath. 1999. Coherent measures of risk. Mathematical Finance 9(3): 203–228.

    Google Scholar 

  • Baumann, P., and N. Trautmann. 2013. Portfolio-optimization models for small investors. Mathematical Methods of Operations Research 77(3): 345–356.

    Google Scholar 

  • Baumol, W.J. 1964. An expected gain-confidence limit criterion for portfolio selection. Management Science 10: 174–182.

    Google Scholar 

  • Bawa, V.S. 1975. Optimal rules for ordering uncertain prospects. Journal of Financial Economics 2(1): 95–121.

    Google Scholar 

  • Beasley, J.E., N. Meade, and T.-J. Chang. 2003. An evolutionary heuristic for the index tracking problem. European Journal of Operational Research 148(3): 621–643.

    Google Scholar 

  • Bienstock, D. 1996. Computational study of a family of mixed-integer quadratic programming problems. Mathematical Programming 74(2): 121–140.

    Google Scholar 

  • Canakgoz, N., and J. Beasley. 2009. Mixed-integer programming approaches for index tracking and enhanced indexation. European Journal of Operational Research 196(1): 384–399.

    Google Scholar 

  • Cariño, D.R., T. Kent, D.H. Myers, C. Stacy, M. Sylvanus, A.L. Turner, K. Watanabe, and W.T. Ziemba. 1994. The Russell-Yasuda Kasai model: An asset/liability model for a Japanese insurance company using multistage stochastic programming. Interfaces 24(1): 29–49.

    Google Scholar 

  • Cariño, D.R., D.H. Myers, and W.T. Ziemba. 1998. Concepts, technical issues, and uses of the Russell-Yasuda Kasai financial planning model. Operations Research 46(4): 450–462.

    Google Scholar 

  • Chang, T.-J., N. Meade, J. Beasley, and Y. Sharaiha. 2000. Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research 27(13): 1271–1302.

    Google Scholar 

  • Chekhlov, A., S. Uryasev, and M. Zabarankin. 2005. Drawdown measure in portfolio optimization. International Journal of Theoretical and Applied Finance 8(1): 13–58.

    Google Scholar 

  • Chen, A.H., F.J. Fabozzi, and D. Huang. 2010. Models for portfolio revision with transaction costs in the mean–variance framework. In Handbook of portfolio construction, ed. John B. Guerard, 133–151. New York/London: Springer.

    Google Scholar 

  • Chen, A.H., F.C. Jen, and S. Zionts. 1971. The optimal portfolio revision policy. Journal of Business 44(1): 51–61.

    Google Scholar 

  • Chiodi, L., R. Mansini, and M.G. Speranza. 2003. Semi-absolute deviation rule for mutual funds portfolio selection. Annals of Operations Research 124(1–4): 245–265.

    Google Scholar 

  • Elton, E., and M. Gruber. 1995. Modern portfolio theory and investment analysis, Portfolio management series. New York: Wiley.

    Google Scholar 

  • Elton, E., M. Gruber, S. Brown, and W. Goetzmann. 2003. Modern portfolio theory and investment analysis. New York: Wiley.

    Google Scholar 

  • Embrechts, P., C. Klüppelberg, and T. Mikosch. 1997. Modelling extremal events: For insurance and finance, Applications of mathematics. New York: Springer.

    Google Scholar 

  • Espinoza, D., and E. Moreno. 2014. A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs. Computational Optimization and Applications 59(3): 617–638.

    Google Scholar 

  • Fabian, C.I., G. Mitra, and D. Roman. 2011. Processing second-order stochastic dominance models using cutting-plane representations. Mathematical Programming 130(1): 33–57.

    Google Scholar 

  • Feinstein, C.D., and M.N. Thapa. 1993. A reformulation of a mean–absolute deviation portfolio optimization model. Management Science 39: 1552–1553.

    Google Scholar 

  • Fieldsend, J.E., J. Matatko, and M. Peng. 2004. Cardinality constrained portfolio optimisation. In IDEAL, Exeter, vol. 3177, ed. Z.R. Yang, R.M. Everson, and H. Yin. Lecture Notes in Computer Science, 788–793. Springer.

    Google Scholar 

  • Fishburn, P.C. 1976. Continua of stochastic dominance relations for bounded probability distributions. Journal of Mathematical Economics 3(3): 295–311.

    Google Scholar 

  • Fishburn, P.C. 1977. Mean-risk analysis with risk associated with below target returns. American Economic Revue 67: 116–126.

    Google Scholar 

  • Fourer, R. 2013. Linear programming software survey. OR/MS Today 40(3): 40–53.

    Google Scholar 

  • Gastwirth, J.L. 1971. A general definition of the lorenz curve. Econometrica 39(6): 1037–1039.

    Google Scholar 

  • Guastaroba, G., R. Mansini, W. Ogryczak, and M. Speranza. 2014. Linear programming models based on Omega ratio for the enhanced index tracking problem. Tech. Rep. 2014–33, Institute of Control and Computation Engineering, Warsaw University of Technology.

    Google Scholar 

  • Guastaroba, G., R. Mansini, and M.G. Speranza. 2009a. Models and simulations for portfolio rebalancing. Computational Economics 33(3): 237–262.

    Google Scholar 

  • Guastaroba, G., R. Mansini, and M.G. Speranza. 2009b. On the effectiveness of scenario generation techniques in single-period portfolio optimization. European Journal of Operational Research 192(2): 500–511.

    Google Scholar 

  • Guastaroba, G., and M.G. Speranza. 2012. Kernel search: An application to the index tracking problem. European Journal of Operational Research 217(1): 54–68.

    Google Scholar 

  • Hadar, J., and W.R. Russell. 1969. Rules for ordering uncertain prospects. American Economic Review 59(1): 25–34.

    Google Scholar 

  • Hanoch, G., and H. Levy. 1969. The efficiency analysis of choices involving risk. Review of Economic Studies 36(107): 335–346.

    Google Scholar 

  • Hardy, G.H., J.E. Littlewood, and G. Pólya. 1934. Inequalities. London: Cambridge University Press.

    Google Scholar 

  • Jobst, N., M. Horniman, C. Lucas, and G. Mitra. 2001. Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints. Quantitative Finance 1(5): 489–501.

    Google Scholar 

  • Jorion, P. 2006. Value at risk: The new benchmark for managing financial risk, 3rd edn. New York: Mcgraw-Hill.

    Google Scholar 

  • Kahneman, D., and A. Tversky. 1979. Prospect theory: An analysis of decision under risk. Econometrica 47(2): 263–291.

    Google Scholar 

  • Kellerer, H., R. Mansini, and M. Speranza. 2000. Selecting portfolios with fixed costs and minimum transaction lots. Annals of Operations Research 99(1–4): 287–304.

    Google Scholar 

  • Konno, H., K. Akishino, and R. Yamamoto. 2005. Optimization of a long-short portfolio under nonconvex transaction cost. Computational Optimization and Applications 32(1–2): 115–132.

    Google Scholar 

  • Konno, H., and A. Wijayanayake. 2001. Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints. Mathematical Programming 89(2): 233–250.

    Google Scholar 

  • Konno, H., and R. Yamamoto. 2005. Global optimization versus integer programming in portfolio optimization under nonconvex transaction costs. Journal of Global Optimization 32(2): 207–219.

    Google Scholar 

  • Konno, H., and H. Yamazaki. 1991. Mean–absolute deviation portfolio optimization model and its application to tokyo stock market. Management Science 37: 519–531.

    Google Scholar 

  • Koshizuka, T., H. Konno, and R. Yamamoto. 2009. Index-plus-alpha tracking subject to correlation constraint. International Journal of Optimization: Theory, Methods and Applications 1: 215–224.

    Google Scholar 

  • Kouwenberg, R., and S. Zenios. 2001. Stochastic programming models for asset liability management. In Handbook of asset and liability management, ed. S. Zenios, W. Ziemba, 253–299. Amsterdam: North-Holland.

    Google Scholar 

  • Krejić, N., M. Kumaresan, and A. Rožnjik. 2011. VaR optimal portfolio with transaction costs. Applied Mathematics and Computation 218(8): 4626–4637.

    Google Scholar 

  • Krokhmal, P., J. Palmquist, and S. Uryasev. 2002. Portfolio optimization with conditional value-at-risk objective and constraints. Journal of Risk 4(2): 11–27.

    Google Scholar 

  • Krzemienowski, A. 2009. Risk preference modeling with conditional average: Anapplication to portfolio optimization. Annals of Operations Research 165(1): 67–95.

    Google Scholar 

  • Krzemienowski, A., and W. Ogryczak. 2005. On extending the LP computable risk measures to account downside risk. Computational Optimization and Applications 32(1–2): 133–160.

    Google Scholar 

  • Kumar, R., G. Mitra, and D. Roman. 2010. Long-short portfolio optimization in the presence of discrete asset choice constraints and two risk measures. Journal of Risk 13(2): 71–100.

    Google Scholar 

  • Le Thi, H.A., M. Moeini, and T.P. Dinh. 2009. DC programming approach for portfolio optimization under step increasing transaction costs. Optimization 58(3): 267–289.

    Google Scholar 

  • Lee, E.K., and J.E. Mitchell. 2000. Computational experience of an interior-point SQP algorithm in a parallel branch-and-bound framework. In High performance optimization, vol. 33, ed. H. Frenk, K. Roos, T. Terlaky, S. Zhang. Applied Optimization, 329–347. Boston: Springer US.

    Google Scholar 

  • Levy, H. 2006. Stochastic dominance: Investment decision making under uncertainty, 2nd edn. New York: Springer.

    Google Scholar 

  • Levy, H., and Y. Kroll. 1978. Ordering uncertain options with borrowing and lending. Journal of Finance 33(2): 553–574.

    Google Scholar 

  • Li, D., X. Sun, and J. Wang. 2006. Optimal lot solution to cardinality constrained mean–variance formulation for portfolio selection. Mathematical Finance 16(1): 83–101.

    Google Scholar 

  • Lim, C., H.D. Sherali, and S. Uryasev. 2010. Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization. Computational Optimization and Applications 46(3): 391–415.

    Google Scholar 

  • Lintner, J. 1965. The valuation of risky assets and the selection of risky investments in stock portfolios and capital budget. Review of Economics and Statistics 47: 13–37.

    Google Scholar 

  • Liu, S., and D. Stefek. 1995. A genetic algorithm for the asset paring problem in portfolio optimization. In Proceedings of the first international symposium on operations research and its application (ISORA), Beijing, 441–450.

    Google Scholar 

  • Lobo, M., M. Fazel, and S. Boyd. 2007. Portfolio optimization with linear and fixed transaction costs. Annals of Operations Research 152: 341–365.

    Google Scholar 

  • Mansini, R., W. Ogryczak, and M.G. Speranza. 2003a. LP solvable models for portfolio optimization: A classification and computational comparison. IMA Journal of Management Mathematics 14: 187–220.

    Google Scholar 

  • Mansini, R., W. Ogryczak, and M.G. Speranza. 2003b. On LP solvable models for portfolio optimization. Informatica 14: 37–62.

    Google Scholar 

  • Mansini, R., W. Ogryczak, and M.G. Speranza. 2007. Conditional value at risk and related linear programming models for portfolio optimization. Annals of Operations Research 152: 227–256.

    Google Scholar 

  • Mansini, R., W. Ogryczak, and M.G. Speranza. 2014. Twenty years of linear programming based portfolio optimization. European Journal of Operational Research 234(2): 518–535.

    Google Scholar 

  • Mansini, R., W. Ogryczak, and M.G. Speranza. 2015. Portfolio optimization and transaction costs. In Quantitative financial risk management: Theory and practice, ed. C. Zopounidis and E. Galariotis, 212–241. Oxford: Wiley.

    Google Scholar 

  • Mansini, R., and M.G. Speranza. 1999. Heuristic algorithms for the portfolio selection problem with minimum transaction lots. European Journal of Operational Research 114(2): 219–233.

    Google Scholar 

  • Mansini, R., and M.G. Speranza. 2005. An exact approach for portfolio selection with transaction costs and rounds. IIE Transactions 37(10): 919–929.

    Google Scholar 

  • Markowitz, H.M. 1952. Portfolio selection. Journal of Finance 7: 77–91.

    Google Scholar 

  • Markowitz, H.M. 1959. Portfolio selection: Efficient diversification of investments. New York: Wiley.

    Google Scholar 

  • Mausser, H., D. Saunders, and L. Seco. 2006. Optimising omega. Risk Magazine 19(11): 88–92.

    Google Scholar 

  • Meade, N., and J.E. Beasley. 2011. Detection of momentum effects using an index out-performance strategy. Quantitative Finance 11(2): 313–326.

    Google Scholar 

  • Michalowski, W., and W. Ogryczak. 2001. Extending the MAD portfolio optimization model to incorporate downside risk aversion. Naval Research Logistics 48(3): 185–200.

    Google Scholar 

  • Mossin, J. 1966. Equilibrium in a capital asset market. Econometrica 34: 768–783.

    Google Scholar 

  • Müller, A., and D. Stoyan. 2002. Comparison methods for stochastic models and risks. New York: Wiley.

    Google Scholar 

  • Nawrocki, D.N. 1992. The characteristics of portfolios selected by n-degree lower partial moment. International Review of Financial Analysis 1(3): 195–209.

    Google Scholar 

  • Neumann, J.V., and O. Morgenstern. 1947. Theory of games and economic behavior, 2nd edn. Princeton: Princeton University Press.

    Google Scholar 

  • Ogryczak, W. 1999. Stochastic dominance relation and linear risk measures. In Financial modelling – Proceedings of the 23rd meeting EURO WG financial modelling, 1998, Cracow, ed. A.M. Skulimowski, 191–212. Progress & Business Publisher.

    Google Scholar 

  • Ogryczak, W. 2000. Multiple criteria linear programming model for portfolio selection. Annals of Operations Research 97(1–4): 143–162.

    Google Scholar 

  • Ogryczak, W., and A. Ruszczyński. 1999. From stochastic dominance to mean-risk models: Semideviations as risk measures. European Journal of Operational Research 116(1): 33–50.

    Google Scholar 

  • Ogryczak, W., and A. Ruszczyński. 2001. On consistency of stochastic dominance and mean-semideviation models. Mathematical Programming 89(2): 217–232.

    Google Scholar 

  • Ogryczak, W., and A. Ruszczyński. 2002a. Dual stochastic dominance and quantile risk measures. International Transactions in Operational Research 9(5): 661–680.

    Google Scholar 

  • Ogryczak, W., and A. Ruszczyński. 2002b. Dual stochastic dominance and related mean-risk models. SIAM Journal on Optimization 13(1): 60–78.

    Google Scholar 

  • Ogryczak, W., and T. Śliwiński. 2011a. On dual approaches to efficient optimization of LP computable risk measures for portfolio selection. Asia-Pacific Journal of Operational Research 28(1): 41–63.

    Google Scholar 

  • Ogryczak, W., and T. Śliwiński. 2011b. On solving the dual for portfolio selection by optimizing conditional value at risk. Computational Optimization and Applications 50(3): 591–595.

    Google Scholar 

  • Pflug, G.C. 2000. Some remarks on the value-at-risk and the conditional value-at-risk. In Probabilistic constrained optimization: Methodology and applications, ed. S. Uryasev, 272–281. Boston: Kluwer.

    Google Scholar 

  • Pflug, G.C. 2001. Scenario tree generation for multiperiod financial optimization by optimal discretization. Mathematical Programming 89(2): 251–271.

    Google Scholar 

  • Pogue, G.A. 1970. An extension of the Markowtiz portfolio selection model to include variable transaction costs, short sales, leverage policies and taxes. Journal of Finance 25(5): 1005–1027.

    Google Scholar 

  • Quiggin, J. 1982. A theory of anticipated utility. Journal of Economic Behavior & Organization 3(4): 323–343.

    Google Scholar 

  • Quirk, J.P., and R. Saposnik. 1962. The efficiency analysis of choices involving risk. Review of Economic Studies 29(2): 140–146.

    Google Scholar 

  • Rockafellar, R., S. Uryasev, and M. Zabarankin. 2006. Generalized deviations in risk analysis. Finance and Stochastics 10(1): 51–74.

    Google Scholar 

  • Rockafellar, R.T., and S. Uryasev. 2000. Optimization of conditional value-at-risk. Journal of Risk 2: 21–41.

    Google Scholar 

  • Roman, D., K. Darby-Dowman, and G. Mitra. 2007. Mean-risk models using two risk measures: A multi-objective approach. Quantitative Finance 7(4): 443–458.

    Google Scholar 

  • Rothschild, M., and J.E. Stiglitz. 1970. Increasing risk: I. A definition. Journal of Economic Theory 2(3): 225–243.

    Google Scholar 

  • Roy, A. 1952. Safety-first and the holding of assets. Econometrica 20: 431–449.

    Google Scholar 

  • Shadwick, W., and C. Keating. 2002. A universal performance measure. Journal of Portfolio Measurement 6(3 Spring): 59–84.

    Google Scholar 

  • Sharpe, W.F. 1964. Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance 19: 425–442.

    Google Scholar 

  • Sharpe, W.F. 1971a. A linear programming approximation for the general portfolio analysis problem. Journal of Financial and Quantitative Analysis 6: 1263–1275.

    Google Scholar 

  • Sharpe, W.F. 1971b. Mean-absolute deviation characteristic lines for securities and portfolios. Management Science 18: B1–B13.

    Google Scholar 

  • Shorrocks, A.F. 1983. Ranking income distributions. Economica 50(197): 3–17.

    Google Scholar 

  • Smith, K.V. 1967. A transition model for portfolio revision. Journal of Finance 22(3): 425–439

    Google Scholar 

  • Speranza, M.G. 1993. Linear programming models for portfolio optimization. Finance 14: 107–123.

    Google Scholar 

  • Speranza, M.G. 1996. A heuristic algorithm for a portfolio optimization model applied to the Milan stock market. Computers & Operations Research 23(5): 433–441.

    Google Scholar 

  • Stone, B.K. 1973. A linear programming formulation of the general portfolio selection problem. Journal of Financial and Quantitative Analysis 8: 621–636.

    Google Scholar 

  • Tobin, J. 1958. Liquidity preference as behavior towards risk. Review of Economic Studies 25(2): 65–86.

    Google Scholar 

  • Topaloglou, N., H. Vladimirou, and S.A. Zenios. 2002. CVaR models with selective hedging for international asset allocation. Journal of Banking & Finance 26(7): 1535–1561.

    Google Scholar 

  • Valle, C., N. Meade, and J. Beasley. 2014a. Absolute return portfolios. Omega 45: 20–41.

    Google Scholar 

  • Valle, C., N. Meade, and J. Beasley. 2014b. Market neutral portfolios. Optimization Letters 8: 1961–1984.

    Google Scholar 

  • Whitmore, G.A. 1970. Third-degree stochastic dominance. American Economic Review 60(3): 457–459.

    Google Scholar 

  • Woodside-Oriakhi, M., C. Lucas, and J. Beasley. 2013. Portfolio rebalancing with an investment horizon and transaction costs. Omega 41(2): 406–420.

    Google Scholar 

  • Xidonas, P., G. Mavrotas, and J. Psarras. 2010. Portfolio construction on the Athens Stock Exchange: A multiobjective optimization approach. Optimization 59(8): 1211–1229.

    Google Scholar 

  • Yaari, M.E. 1987. The dual theory of choice under risk. Econometrica 55(1): 95–115.

    Google Scholar 

  • Yitzhaki, S. 1982. Stochastic dominance, mean variance, and Gini’s mean difference. American Economic Review 72: 178–185.

    Google Scholar 

  • Young, M.R. 1998. A minimax portfolio selection rule with linear programming solution. Management Science 44(5): 673–683.

    Google Scholar 

  • Zenios, S., and P. Kang. 1993. Mean-absolute deviation portfolio optimization for mortgage-backed securities. Annals of Operations Research 45(1): 433–450.

    Google Scholar 

  • Zhu, S., and M. Fukushima. 2009. Worst-case conditional value-at-risk with application to robust portfolio management. Operations Research 57(5): 1155–1168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mansini, R., Ogryczak, W., Speranza, M.G. (2015). Rebalancing and Index Tracking. In: Linear and Mixed Integer Programming for Portfolio Optimization. EURO Advanced Tutorials on Operational Research. Springer, Cham. https://doi.org/10.1007/978-3-319-18482-1_5

Download citation

Publish with us

Policies and ethics