Skip to main content

Fundamentals of Non-Local Total Variation Spectral Theory

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9087))

Abstract

Eigenvalue analysis based on linear operators has been extensively used in signal and image processing to solve a variety of problems such as segmentation, dimensionality reduction and more. Recently, nonlinear spectral approaches, based on the total variation functional have been proposed. In this context, functions for which the nonlinear eigenvalue problem \( \lambda u \in \partial J(u)\) admits solutions, are studied. When \(u\) is the characteristic function of a set \(A\), then it is called a calibrable set. If \(\lambda >0\) is a solution of the above problem, then \(1/\lambda \) can be interpreted as the scale of \(A\). However, this notion of scale remains local, and it may not be adapted for non-local features. For this we introduce in this paper the definition of non-local scale related to the non-local total variation functional. In particular, we investigate sets that evolve with constant speed under the non-local total variation flow. We prove that non-local calibrable sets have this property. We propose an onion peel construction to build such sets. We eventually confirm our mathematical analysis with some simple numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreu, F., Ballester, C., Caselles, V., Mazon, J.M.: Minimizing total variation flow. Differential and Integral Equations 14(3), 321–360 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Andreu-Vaillo, F., Caselles, V., Mazon, J.M.: Parabolic quasilinear equations minimizing linear growth functionals. Progress in Mathematics, vol. 223. Birkhauser (2002)

    Google Scholar 

  3. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Applied Mathematical Sciences, vol. 147. Springer (2002)

    Google Scholar 

  4. Aujol, J.-F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition - modeling, algorithms, and parameter selection. International Journal of Computer Vision 67(1), 111–136 (2006)

    Article  MATH  Google Scholar 

  5. Aujol, J.F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. Journal of Mathematical Imaging and Vision 22(1), 71–88 (2005)

    Article  MathSciNet  Google Scholar 

  6. Boulanger, J., Elbau, P., Pontow, C., Scherzer, O.: Non-local functionals for imaging. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 131–154. Springer (2011)

    Google Scholar 

  7. Brox, T., Weickert, J.: A tv flow based local scale measure for texture discrimination. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 578–590. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation (SIAM Interdisciplinary Journal) 4, 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Caselles, V., Chambolle, A., Moll, S., Novaga, M.: A characterization of convex calibrable sets in \(\mathbb{R}^n\) with respect to anisotropic norms. Annales de l’Institut Henri Poincaré 25, 803–832 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized \({L}^1\) function approximation. SIAM Journal on Applied Mathematics 65(5), 1817–1837 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Duval, V., Aujol, J.-F., Gousseau, Y.: The tvl1 model: a geometric point of view. SIAM Journal on Multiscale Modeling and Simulation 8(1), 154–189 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing. IEEE Transactions on Image Processing 17(7), 1047–1060 (2008)

    Article  MathSciNet  Google Scholar 

  13. Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM Journal on Imaging Sciences 7(4), 1937–1961 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. SIAM Multiscale Modeling and Simulation 7(3), 1005–1028 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Luo, B., Aujol, J.-F., Gousseau, Y.: Local scale measure from the topographic map and application to remote sensing images. SIAM Journal on Multiscale Modeling and Simulation (in press 2009)

    Google Scholar 

  16. Moll, J.S.: The anisotropic total variation flow. Mathematische Annalen 332, 177–218 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Osher, S.J., Sole, A., Vese, L.A.: Image decomposition and restoration using total variation minimization and the H\(^{-1}\) norm. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal 1(3), 349–370 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pontow, C., Scherzer, O.: Analytical Evaluations of Double Integral Expressions Related to Total Variation. Springer (2012)

    Google Scholar 

  19. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  20. Strong, D., Aujol, J.-F., Chan, T.F.: Scale recognition, regularization parameter selection, and Meyer’s \({G}\) norm in total variation regularization. SIAM Journal on Multiscale Modeling and Simulation 5(1), 273–303 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Problems 19(6), 165–187 (2003)

    Article  MathSciNet  Google Scholar 

  22. van Gennip, Y., Guillen, N., Osting, B., Bertozzi, A.L.: Mean curvature, threshold dynamics, and phase field theory on finite graphs. Milan Journal of Mathematics 82(1), 3–65 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Gilboa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Aujol, JF., Gilboa, G., Papadakis, N. (2015). Fundamentals of Non-Local Total Variation Spectral Theory. In: Aujol, JF., Nikolova, M., Papadakis, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2015. Lecture Notes in Computer Science(), vol 9087. Springer, Cham. https://doi.org/10.1007/978-3-319-18461-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18461-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18460-9

  • Online ISBN: 978-3-319-18461-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics