Advertisement

Measurement of ROS Levels and Membrane Potential Dynamics in the Intact Carotid Body Ex Vivo

  • Andre BernardiniEmail author
  • Ulf Brockmeier
  • Eric Metzen
  • Utta Berchner-Pfannschmidt
  • Eva Harde
  • Amparo Acker-Palmer
  • Dmitri Papkovsky
  • Helmut Acker
  • Joachim Fandrey
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 860)

Abstract

Reactive oxygen species (ROS) generated by the NADPH oxidase have been proposed to play an important role in the carotid body (CB) oxygen sensing process (Cross et al. 1990). Up to now it remains unclear whether hypoxia causes an increase or decrease of CB ROS levels. We transfected CBs with the ROS sensitive HSP-FRET construct and subsequently measured the intracellular redox state by means of Förster resonance energy transfer (FRET) microscopy. In a previous study we found both increasing and decreasing ROS levels under hypoxic conditions. The transition from decreasing to increasing ROS levels coincided with the change of the caging system from ambient environment caging (AEC) to individually ventilated caging (IVC) (Bernardini A, Brockmeier U, Metzen E, Berchner-Pfannschmidt U, Harde E, Acker-Palmer A, Papkovsky D, Acker H, Fandrey J, Type I cell ROS kinetics under hypoxia in the intact mouse carotid body ex vivo: a FRET based study. Am J Physiol Cell Physiol. doi: 10.1152/ajpcell.00370.2013, 2014). In this work we analyze hypoxia induced ROS reaction of animals from an IVC system that had been exposed to AEC conditions for 5 days. The results further support the hypothesis of an important impact of the caging system on CB ROS reaction.

Keywords

Carotid body ROS Tissue-oxygen Membrane potential FRET microscopy NADPH oxidase 

References

  1. Acker H (2005) The oxygen sensing signal cascade under the influence of reactive oxygen species. Philos Trans R Soc Lond Ser B Biol Sci 360(1464):2201–2210. doi: 10.1098/rstb.2005.1760 CrossRefGoogle Scholar
  2. Bernardini A, Wotzlaw C, Lipinski H-G, Fandrey J (2010) An automated real-time microscopy system for analysis of fluorescence resonance energy transfer. In: Schelkens P, Ebrahimi T, Cristóbal G, Truchetet F, Saarikko P (eds) Proc SPIE 7723, 772311. doi: 10.1117/12.854027
  3. Bernardini A, Brockmeier U, Metzen E, Berchner-Pfannschmidt U, Harde E, Acker-Palmer A, Papkovsky D, Acker H. Fandrey J (2014) Type I cell ROS kinetics under hypoxia in the intact mouse carotid body ex vivo: a FRET based study. Am J Physiol Cell Physiol. doi: 10.1152/ajpcell.00370.2013
  4. Buttigieg J, Pan J, Yeger H, Cutz E (2012) NOX2 (gp91phox) is a predominant O2 sensor in a human airway chemoreceptor cell line: biochemical, molecular, and electrophysiological evidence. Am J Physiol Lung Cell Mol Physiol 303(7):L598–L607. doi: 10.1152/ajplung.00170.2012 PubMedCrossRefPubMedCentralGoogle Scholar
  5. Cross A, Henderson L, Jones OTG, Delpiano MA, Hentschel J, Acker H (1990) Involvement of an NAD(P)H oxidase as a pO2 sensor protein in the rat carotid body. Biochem J 272(3):743–747Google Scholar
  6. Dinger B, He L, Chen J, Liu X, Gonzalez C, Obeso A, Sanders K, Hoidal J, Stensaas L, Fidone S (2007) The role of NADPH oxidase in carotid body arterial chemoreceptors. Respir Physiol Neurobiol 157(1):45–54. doi: 10.1016/j.resp.2006.12.003
  7. He L, Dinger B, Sanders K, Hoidal J, Obeso A, Stensaas L, Fidone S, Gonzalez C (2005) Effect of p47phox gene deletion on ROS production and oxygen sensing in mouse carotid body chemoreceptor cells. Am J Physiol Lung Cell Mol Physiol 289(6):L916–L924. doi: 10.1152/ajplung.00015.2005
  8. Sanders KA, Sundar KM, He L, Dinger B, Fidone S, Hoidal JR (2002) Role of components of the phagocytic NADPH oxidase in oxygen sensing. J Appl Physiol (Bethesda, Md. : 1985) 93(4):1357–1364. doi: 10.1152/japplphysiol.00564.2001
  9. Waypa GB, Guzy R, Mungai PT, Mack MM, Marks JD, Roe MW, Schumacker PT (2006) Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circ Res 99(9):970–978. doi: 10.1161/01.RES.0000247068.75808.3f PubMedCrossRefGoogle Scholar
  10. Wu W, Platoshyn O, Firth AL, Yuan JX-J (2007) Hypoxia divergently regulates production of reactive oxygen species in human pulmonary and coronary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 293(4):L952–L959. doi: 10.1152/ajplung.00203.2007 PubMedCrossRefGoogle Scholar
  11. York JM, McDaniel AW, Blevins NA, Guillet RR, Allison SO, Cengel KA, Freund GG (2012) Individually ventilated cages cause chronic low-grade hypoxia impacting mice hematologically and behaviorally. Brain Behav Immun 26(6):951–958. doi: 10.1016/j.bbi.2012.04.008 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andre Bernardini
    • 1
    Email author
  • Ulf Brockmeier
    • 1
  • Eric Metzen
    • 1
  • Utta Berchner-Pfannschmidt
    • 2
  • Eva Harde
    • 3
  • Amparo Acker-Palmer
    • 3
  • Dmitri Papkovsky
    • 4
  • Helmut Acker
    • 1
  • Joachim Fandrey
    • 1
  1. 1.Institute of PhysiologyUniversity of Duisburg-EssenEssenGermany
  2. 2.Department of OpthalmologyUniversity of Duisburg-EssenEssenGermany
  3. 3.Institute for Cell Biology and Neuroscience and Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtFrankfurt am MainGermany
  4. 4.Biochemistry DepartmentUniversity College CorkCorkIreland

Personalised recommendations