Skip to main content

Tissue Dynamics of the Carotid Body Under Chronic Hypoxia: A Computational Study

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 860))

Abstract

The carotid body (CB) increases in volume in response to chronic continuous hypoxia and the mechanisms underlying this adaptive response are not fully elucidated. It has been proposed that chronic hypoxia could lead to the generation of a sub-population of type II cells representing precursors, which, in turn, can give rise to mature type I cells. To test whether this process could explain not only the observed changes in cell number, but also the micro-anatomical pattern of tissue rearrangement, a mathematical modeling approach was devised to simulate the hypothetical sequence of cellular events occurring within the CB during chronic hypoxia. The modeling strategy involved two steps. In a first step a “population level” modeling approach was followed, in order to estimate, by comparing the model results with the available experimental data, “macroscopic” features of the cell system, such as cell population expansion rates and differentiation rates. In the second step, these results represented key parameters to build a “cell-centered” model simulating the self-organization of a system of CB cells under a chronic hypoxic stimulus and including cell adhesion, cytoskeletal rearrangement, cell proliferation, differentiation, and apoptosis. The cell patterns generated by the model showed consistency (from both a qualitative and quantitative point of view) with the observations performed on real tissue samples obtained from rats exposed to 16 days hypoxia, indicating that the hypothesized sequence of cellular events was adequate to explain not only changes in cell number, but also the tissue architecture acquired by CB following a chronic hypoxic stimulus.

Andrea Porzionato and Diego Guidolin contributed equally to this work

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bassingthwaighte JB (2000) Strategies for the physiome project. Ann Biomed Eng 28:1043–1058

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bauer AL, Jackson TL, Jiang Y (2007) A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J 92:3105–3121

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boas SEM, Merks RMH (2014) Synergy of cell-cell repulsion and vacuolation in a computational model of lumen formation. J R Soc Interface 11:20131049

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi R, Huang C, Izaguirre JA, Newman SA, Glazier JA (2004) A hybrid discrete-continuum model for 3D skeletogenesis of the vertebrate limb. LNCS 3305:543–552

    Google Scholar 

  • Clarke JA, Daly MB, Marshall JM, Ead HW, Hennessy EM (2000) Quantitative studies of the vasculature of the carotid body in the chronically hypoxic rat. Braz J Med Biol Res 33:331–340

    Google Scholar 

  • Cickovski T, Aras K, Alber MS, Izaguirre JA, Swat M, Glazier JA, Merks RM, Glimm T, Hentschel HG, Newman SA (2007) From genes to organisms via the cell: a problem-solving environment for multicellular development. Comput Sci Eng 9:50–60

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Caro R, Macchi V, Sfriso MM, Porzionato A (2013) Structural and neurochemical changes in the maturation of the carotid body. Respir Physiol Neurobiol 185:9–19

    Article  PubMed  Google Scholar 

  • Di Giulio C, Zara S, Cataldi A, Porzionato A, Pokorski M, De Caro R (2012) Human carotid body HIF and NGB expression during human development and aging. Adv Exp Med Biol 758:265–271

    Article  PubMed  Google Scholar 

  • Donovan D, Brown NJ, Bishop ET, Lewis CE (2001) Comparison of three in vitro human ‘angiogenesis’ assays with capillaries formed in vivo. Angiogenesis 4:113–121

    Article  PubMed  CAS  Google Scholar 

  • Duchesne L, Octeau V, Bearon RN, Beckett A, Prior IA, Lounis B, Fernig DG (2012) Transport of fibroblast growth factor 2 in the pericellular matrix is controlled by the spatial distribution of its binding sites in heparin sulfate. PLoS Biol 10:e1001361

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Glazier JA, Graner F (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47:2128–2154

    Article  Google Scholar 

  • Guidolin D, Albertin A (2012) Tube formation in vitro angiogenesis assay. Methods Cell Biol 112:281–293

    Article  Google Scholar 

  • Guidolin D, Vacca A, Nussdorfer GG, Ribatti D (2004) A new image analysis method based on topological and fractal parameters to evaluate the angiostatic activity of docetaxel by using the Matrigel assay in vitro. Microvasc Res 67:117–124

    Article  PubMed  CAS  Google Scholar 

  • Guidolin D, Nico B, Belloni AS, Nussdorfer GG, Vacca A, Ribatti D (2007) Morphometry and mathematical modeling of the capillary-like patterns formed in vitro by bone marrow macrophages of patients with multiple myeloma. Leukemia 21:2201–2203

    Article  PubMed  CAS  Google Scholar 

  • Guidolin D, Albertin G, Sorato E, Oselladore B, Mascarin A, Ribatti D (2009) Mathematical modeling of capillary-like pattern generated by adrenomedullin-treated human vascular endothelial cells in vitro. Dev Dyn 238:1951–1963

    Article  PubMed  CAS  Google Scholar 

  • Guidolin D, Rebuffat P, Albertin G (2011) Cell-oriented modeling of angiogenesis. Sci World J 11:1735–1748

    Article  CAS  Google Scholar 

  • Guidolin D, Porzionato A, Tortorella C, Macchi V, De Caro R (2014) Fractal analysis of the structural complexity of the connective tissue in human carotid bodies. Front Physiol 5:432

    Article  PubMed  PubMed Central  Google Scholar 

  • Heat D, Smith P, Jago R (1982) Hyperplasia of the carotid body. J Pathol 138:115–127

    Article  Google Scholar 

  • Jenné R, Banadda EN, Smets I, Deurinck J, Van Impe J (2007) Detection of filamentous bulking problems: developing an image analysis system for sludge composition monitoring. Microsc Microanal 13:36–41

    Article  PubMed  Google Scholar 

  • Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cardiac neural crest. Development 127:1606–1616

    Google Scholar 

  • Joels N, Neil E (1963) The excitation mechanisms of the carotid body. Br Med Bull 19:21–24

    PubMed  CAS  Google Scholar 

  • Kirby GC, McQueen DS (1984) Effects of the antagonists MDL 7222 and ketanserin on responses of cat carotid body chemoreceptors to 5-hydroxytryptamine. Br J Pharmacol 83:259–269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lagendijk AK, Szabo A, Merks RHM, Bakkers J (2013) Hyaluronan: a critical regulator of endothelial-to-mesenchimal transition during cardiac valve formation. Trends Cardiovasc Med 23:135–142

    Article  PubMed  CAS  Google Scholar 

  • Lahiri S (2000) Plasticity and multiplicity in the mechanisms of oxygen sensing. Adv Exp Med Biol 475:13–23

    PubMed  CAS  Google Scholar 

  • LeVeque RJ (2007) Finite difference methods for ordinary and partial differential equations: steady state and time-dependent problems. SIAM, Philadelphia

    Book  Google Scholar 

  • López-Barneo J, Lopez-Lopez JR, Urena J, Gonzales C (1988) Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241:580–582

    Article  PubMed  Google Scholar 

  • Mahoney AW, Smith BG, Flann NS, Podgorski GJ (2008) Discovering novel cancer therapies: a computational modeling and search approach. In: Proceedings of the IEEE symposium on computational intelligence in bioinformatics and computational biology, (CIBCB’08), pp 233–240

    Google Scholar 

  • Merks RMH, Glazier JA (2005) A cell-centered approach to developmental biology. Phys A 352(1):113–130

    Article  CAS  Google Scholar 

  • Merks RM, Brodsky SV, Goligorksy MS, Newman SA, Glazier JA (2006) Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev Biol 289:44–54

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mills L, Nurse C (1993) Chronic hypoxia in vitro increases volume of dissociated carotid body chemoreceptors. NeuroReport 4:619–622

    Article  PubMed  CAS  Google Scholar 

  • Mombach JCM, Glazier JA (1996) Single cell motion in aggregates of embryonic cells. Phys Rev Lett 76:3032–3035

    Article  PubMed  CAS  Google Scholar 

  • Ortega-Sáenz P, Pardal R, Levitsky K, Villadiego J, Muñoz-Manchado AB, Durán R, Bonilla-Henao V, Arias-Mayenco I, Sobrino V, Ordóñez A, Oliver M, Toledo-Aral JJ, López-Barneo J (2013) Cellular properties and chemosensory responses of the human carotid body. J Physiol 591:6157–6173

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardal R, Ortega-Sàenz P, Duràn R, Lòpez-Barneo J (2007) Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 131:364–377

    Article  PubMed  CAS  Google Scholar 

  • Pequignot JM, Hellstrom S, Johansson C (1984) Intact and sympathectomized carotid bodies of long-term hypoxic rats: a morphometric ultrastructural study. J Neurocytol 13:481–493

    Article  PubMed  CAS  Google Scholar 

  • Platero-Luengo A, Gonzàlez-Granero S, Duràn R, Dìaz-Castro B, Piruat JI, Garcìa-Verdugo JM, Pardal R, Lòpez-Barneo J (2014) An O2-sensitive glomus cell-stem cell synapse induces carotid body growth in chronic hypoxia. Cell 156:291–303

    Article  PubMed  CAS  Google Scholar 

  • Porzionato A, Macchi V, Belloni AS, Parenti A, De Caro R (2006) Adrenomedullin immunoreactivity in the human carotid body. Peptides 27:69–73

    Article  PubMed  CAS  Google Scholar 

  • Porzionato A, Macchi V, Parenti A, Matturri L, De Caro R (2008a) Peripheral chemoreceptors: postnatal development and cytochemical findings in Sudden Infant Death Syndrome. Histol Histopathol 23:351–365

    PubMed  Google Scholar 

  • Porzionato A, Macchi V, Parenti A, De Caro R (2008b) Trophic factors in the carotid body. Int Rev Cell Mol Biol 269:1–58

    Article  PubMed  CAS  Google Scholar 

  • Porzionato A, Rucinski M, Macchi V, Stecco C, Castagliuolo I, Malendowicz LK, De Caro R (2011) Expression of leptin and leptin receptor isoforms in the rat and human carotid body. Brain Res 1385:56–67

    Article  PubMed  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  PubMed  CAS  Google Scholar 

  • Smith TG, Lange GD, Marks WB (1996) Fractal methods and results in cellular morphology – dimensions, lacunarity and multifractals. J Neurosci Methods 69:123–136

    Article  PubMed  Google Scholar 

  • Tse A, Yan L, Lee AK, Tse FW (2012) Autocrine and paracrine actions of ATP in rat carotid body. Can J Physiol Pharmacol 90:705–711

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Bisgard GE (2002) Chronic hypoxia-induced morphological and neurochemical changes in the carotid body. Microsc Res Tech 59:168–177

    Article  PubMed  CAS  Google Scholar 

  • Zara S, Pokorski M, Cataldi A, Porzionato A, De Caro R, Antosiewicz J, Di Giulio C (2013) Development and aging are oxygen-dependent and correlate with VEGF and NOS along life span. Adv Exp Med Biol 756:223–228

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Porzionato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Porzionato, A. et al. (2015). Tissue Dynamics of the Carotid Body Under Chronic Hypoxia: A Computational Study. In: Peers, C., Kumar, P., Wyatt, C., Gauda, E., Nurse, C., Prabhakar, N. (eds) Arterial Chemoreceptors in Physiology and Pathophysiology. Advances in Experimental Medicine and Biology, vol 860. Springer, Cham. https://doi.org/10.1007/978-3-319-18440-1_4

Download citation

Publish with us

Policies and ethics