Advertisement

Glutamatergic Receptor Activation in the Commisural Nucleus Tractus Solitarii (cNTS) Mediates Brain Glucose Retention (BGR) Response to Anoxic Carotid Chemoreceptor (CChr) Stimulation in Rats

  • R. Cuéllar
  • S. Montero
  • S. Luquín
  • J. García-Estrada
  • O. Dobrovinskaya
  • V. Melnikov
  • M. Lemus
  • E. Roces de Álvarez-BuyllaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 860)

Abstract

Glutamate, released from central terminals of glossopharyngeal nerve, is a major excitatory neurotransmitter of commissural nucleus tractus solitarii (cNTS) afferent terminals, and brain derived neurotrophic factor (BDNF) has been shown to attenuate glutamatergic AMPA currents in NTS neurons. To test the hypothesis that AMPA contributes to glucose regulation in vivo modulating the hyperglycemic reflex with brain glucose retention (BGR), we microinjected AMPA and NBQX (AMPA antagonist) into the cNTS before carotid chemoreceptor stimulation in anesthetized normal Wistar rats, while hyperglycemic reflex an brain glucose retention (BGR) were analyzed. To investigate the underlying mechanisms, GluR2/3 receptor and c-Fos protein expressions in cNTS neurons were determined. We showed that AMPA in the cNTS before CChr stimulation inhibited BGR observed in aCSF group. In contrast, NBQX in similar conditions, did not modify the effects on glucose variables observed in aCSF control group. These experiments suggest that glutamatergic pathways, via AMPA receptors, in the cNTS may play a role in glucose homeostasis.

Keywords

AMPA NBQX Carotid body Glucose homeostasis Brain glucose retention 

Notes

Acknowledgements

Supported by CONACYT 177047, and FRABA 798/12 grants.

References

  1. Alvarez-Buylla R, Alvarez-Buylla E (1988) Carotid sinus receptors participate in glucose homeostasis. Respir Physiol 72:347–360PubMedCrossRefGoogle Scholar
  2. Alvarez-Buylla R, Alvarez-Buylla E (1994) Changes in blood glucose concentration in the carotid body-sinus modify brain glucose retention. Brain Res 654:167–170PubMedCrossRefGoogle Scholar
  3. Alvarez-Buylla R, de Alvarez-Buylla ER, Mendoza H, Montero SA, Alvarez-Buylla A (1997) Pituitary and adrenals are required for hyperglycemic reflex initiated by stimulation of CBR with cyanide. Am J Physiol 272:R392–R399PubMedGoogle Scholar
  4. Brady R, Katz D, Mayer C, Zaidi S (1999) BDNF is a target-derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. J Neurosci 19:2131–2142PubMedGoogle Scholar
  5. Braga VA, Machado BH (2006) Chemoreflex sympathoexcitation was not altered by the antagonism of glutamate receptors in the commissural nucleus tractus solitarii in the working heart-brainstem preparation of rats. Exp Physiol 91:551–559PubMedCrossRefGoogle Scholar
  6. Braga VA, Soriano RN, Braccialli AL, dePaula PM, Bonagamba LGH, Paton JF, Machado BH (2007) Involvement of L-Glutamate and ATP in the neurotransmission of the sympathoexciytatory component of the chemoreflex in the comissural nucleus tractus solitarii of awake rats and in the working heart-brainstem preparation. J Physiol 581:1129–1145Google Scholar
  7. Clark CG, Hasser EM, Kunze DL, Katz DM, Kline DD (2011) Endogenous brain-derived neurotrophic factor in the nucleus tractus solitarius tonically regulates synaptic and autonomic function. J Neurosci 31:12318–12329PubMedCrossRefPubMedCentralGoogle Scholar
  8. de Paula PM, Tolstykh G, Mifflin S (2007) Chronic intermittent hypoxia alters NMDA and AMPA-evoked currents in NTS neurons receiving carotid body chemoreceptor inputs. Am J Physiol Regul Integr Comp Physiol 292:R2259–R2265PubMedCrossRefGoogle Scholar
  9. Hoffman RP (2007) Sympathetic mechanisms of hypoglycemic counter regulation. Curr Diabetes Rev 3:185–193PubMedCrossRefGoogle Scholar
  10. Koshiya N, Guyenet PG (1996) NTS neurons with carotid chemoreceptor inputs arborize in the rostral ventrolateral medulla. Am J Physiol 270:R1273–R1278PubMedGoogle Scholar
  11. Lemus M, Montero SA, Cadenas JL, Lara JJ, Tejeda-Chavez HR, Álvarez-Buylla R, de Álvarez-Buylla ER (2008) GabaB receptors activation in the NTS blocks the glycemic responses induced by carotid body receptor stimulation. Auton Neurosci 141:73–82PubMedCrossRefGoogle Scholar
  12. Lin L (2009) Glutamatergic neurons say NO in the nucleus tractus solitarii. J Chem Neuroanat 38:154–165PubMedCrossRefPubMedCentralGoogle Scholar
  13. Müeller P, Foley C, Vogl H, Hay M, Hasser E (2005) Cardiovascular response to a group III mGluR agonist in NTS requires NMDA receptors. Am J Physiol Regul Integr Comp Physiol 289:R198–R208PubMedCrossRefGoogle Scholar
  14. Ohtake PJ, Torres JE, Gozal YM, Graff GR, Gozal D (1998) NMDA receptors mediate peripheral chemoreceptor afferent input in the conscious rat. J Appl Physiol 84:853–861PubMedGoogle Scholar
  15. Ozawa S, Kamiya H, Tsuzuki K (1998) Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 54:581–618PubMedCrossRefGoogle Scholar
  16. Pang ZP, Han W (2012) Regulation of synaptic functions in central nervous system by endocrine hormones and the maintenance of energy homeostasis. Biosci Rep 32:423–432PubMedCrossRefPubMedCentralGoogle Scholar
  17. Paton JFR, Deuchars J, Li YW, Kasparov S (2001) Properties of solitary tract neurones responding to peripheral arterial chemoreceptor. Neuroscience 105:231–248PubMedCrossRefGoogle Scholar
  18. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic, New YorkGoogle Scholar
  19. Serani A, Lavados M, Zapata P (1983) Cardiovascular responses to hypoxia in the spontaneously breathing cat: reflexes originating from carotid and aortic bodies. Arch Biol Med Exp 16:29–41PubMedGoogle Scholar
  20. Takakura AC, Moreira TS, Colombari E, West GH, Stornetta RL, Guyenet PG (2006) Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2-sensitive neurons in rats. J Physiol 572:503–523PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • R. Cuéllar
    • 1
  • S. Montero
    • 1
    • 2
  • S. Luquín
    • 3
  • J. García-Estrada
    • 3
    • 4
  • O. Dobrovinskaya
    • 1
  • V. Melnikov
    • 2
  • M. Lemus
    • 1
  • E. Roces de Álvarez-Buylla
    • 1
    Email author
  1. 1.Centro Universitario de Investigaciones BiomédicasUniversidad de ColimaColimaMéxico
  2. 2.Facultad de MedicinaUniversidad de ColimaColimaMéxico
  3. 3.Centro Universitario de Ciencias de la SaludUniversidad de GuadalajaraGuadalajaraMéxico
  4. 4.Centro de Investigaciones Biomédicas de OccidenteIMSSGuadalajaraMéxico

Personalised recommendations