T-Type Ca2+ Channel Regulation by CO: A Mechanism for Control of Cell Proliferation

  • Hayley Duckles
  • Moza M. Al-Owais
  • Jacobo Elies
  • Emily Johnson
  • Hannah E. Boycott
  • Mark L. Dallas
  • Karen E. Porter
  • John P. Boyle
  • Jason L. Scragg
  • Chris PeersEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 860)


T-type Ca2+ channels regulate proliferation in a number of tissue types, including vascular smooth muscle and various cancers. In such tissues, up-regulation of the inducible enzyme heme oxygenase-1 (HO-1) is often observed, and hypoxia is a key factor in its induction. HO-1 degrades heme to generate carbon monoxide (CO) along with Fe2+ and biliverdin. Since CO is increasingly recognized as a regulator of ion channels (Peers et al. 2015), we have explored the possibility that it may regulate proliferation via modulation of T-type Ca2+ channels.

Whole-cell patch-clamp recordings revealed that CO (applied as the dissolved gas or via CORM donors) inhibited all 3 isoforms of T-type Ca2+ channels (Cav3.1-3.3) when expressed in HEK293 cells with similar IC50 values, and induction of HO-1 expression also suppressed T-type currents (Boycott et al. 2013). CO/HO-1 induction also suppressed the elevated basal [Ca2+ ]i in cells expressing these channels and reduced their proliferative rate to levels seen in non-transfected control cells (Duckles et al. 2015).

Proliferation of vascular smooth muscle cells (both A7r5 and human saphenous vein cells) was also suppressed either by T-type Ca2+ channel inhibitors (mibefradil and NNC 55-0396), HO-1 induction or application of CO. Effects of these blockers and CO were non additive. Although L-type Ca2+ channels were also sensitive to CO (Scragg et al. 2008), they did not influence proliferation. Our data suggest that HO-1 acts to control proliferation via CO modulation of T-type Ca2+ channels.


Heme oxygenase Carbon monoxide T-type Ca2+ channel Smooth muscle Vascular disease Proliferation 



This work was supported by the British Heart Foundation.


  1. Araujo JA, Zhang M, Yin F (2012) Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol 3:119PubMedCrossRefPubMedCentralGoogle Scholar
  2. Barbado M, Fablet K, Ronjat M, De WM (2009) Gene regulation by voltage-dependent calcium channels. Biochim Biophys Acta 1793:1096–1104PubMedCrossRefGoogle Scholar
  3. Boycott HE, Dallas ML, Elies J, Pettinger L, Boyle JP, Scragg JL, Gamper N, Peers C (2013) Carbon monoxide inhibition of Cav3.2 T-type Ca2+ channels reveals tonic modulation by thioredoxin. FASEB J 27:3395–3407PubMedCrossRefGoogle Scholar
  4. Cao J, Inoue K, Li X, Drummond G, Abraham NG (2009) Physiological significance of heme oxygenase in hypertension. Int J Biochem Cell Biol 41:1025–1033PubMedCrossRefPubMedCentralGoogle Scholar
  5. Chang T, Wu L, Wang R (2008) Inhibition of vascular smooth muscle cell proliferation by chronic hemin treatment. Am J Physiol Heart Circ Physiol 295:H999–H1007PubMedCrossRefGoogle Scholar
  6. Cidad P, Moreno-Dominguez A, Novensa L, Roque M, Barquin L, Heras M, Perez-Garcia MT, Lopez-Lopez JR (2010) Characterization of ion channels involved in the proliferative response of femoral artery smooth muscle cells. Arterioscler Thromb Vasc Biol 30:1203–1211PubMedCrossRefGoogle Scholar
  7. Dallas ML, Yang Z, Boyle JP, Boycott HE, Scragg JL, Milligan CJ, Elies J, Duke A, Thireau J, Reboul C, Richard S, Bernus O, Steele DS, Peers C (2012) Carbon monoxide induces cardiac arrhythmia via induction of the late Na + current. Am J Respir Crit Care Med 186:648–656PubMedCrossRefPubMedCentralGoogle Scholar
  8. Duckles H, Boycott HE, Al-Owais MM, Elies J, Johnson E, Dallas ML, Porter KE, Giuntini F, Boyle JP, Scragg JL, Peers C (2015) Heme oxygenase-1 regulates cell proliferation via carbon monoxide-mediated inhibition of T-type Ca2+ channels. Pflugers Arch 467:415–427. doi: 10.1007/s00424-014-1503-5
  9. Durante W (2003) Heme oxygenase-1 in growth control and its clinical application to vascular disease. J Cell Physiol 195:373–382PubMedCrossRefGoogle Scholar
  10. Durante W, Johnson FK, Johnson RA (2006) Role of carbon monoxide in cardiovascular function. J Cell Mol Med 10:672–686PubMedCrossRefPubMedCentralGoogle Scholar
  11. Foresti R, Bani-Hani MG, Motterlini R (2008) Use of carbon monoxide as a therapeutic agent: promises and challenges. Intensive Care Med 34:649–658PubMedCrossRefGoogle Scholar
  12. Heo JH, Seo HN, Choe YJ, Kim S, Oh CR, Kim YD, Rhim H, Choo DJ, Kim J, Lee JY (2008) T-type Ca2+ channel blockers suppress the growth of human cancer cells. Bioorg Med Chem Lett 18:3899–3901PubMedCrossRefGoogle Scholar
  13. Jaggar JH, Li A, Parfenova H, Liu J, Umstot ES, Dopico AM, Leffler CW (2005) Heme is a carbon monoxide receptor for large-conductance Ca2 + -activated K+ channels. Circ Res 97:805–812PubMedCrossRefPubMedCentralGoogle Scholar
  14. Kim HP, Ryter SW, Choi AM (2006) CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 46:411–449PubMedCrossRefGoogle Scholar
  15. Kimes BW, Brandt BL (1976) Characterization of two putative smooth muscle cell lines from rat thoracic aorta. Exp Cell Res 98:349–366PubMedCrossRefGoogle Scholar
  16. Kuga T, Kobayashi S, Hirakawa Y, Kanaide H, Takeshita A (1996) Cell cycle–dependent expression of L- and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture. Circ Res 79:14–19PubMedCrossRefGoogle Scholar
  17. Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch CM, Bergdahl A, Hultgardh-Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ (2006) Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 98:557–563PubMedCrossRefPubMedCentralGoogle Scholar
  18. Lipskaia L, Hulot JS, Lompre AM (2009) Role of sarco/endoplasmic reticulum calcium content and calcium ATPase activity in the control of cell growth and proliferation. Pflugers Arch 457:673–685PubMedCrossRefGoogle Scholar
  19. Newby AC, George SJ (1996) Proliferation, migration, matrix turnover, and death of smooth muscle cells in native coronary and vein graft atherosclerosis. Curr Opin Cardiol 11:574–582PubMedCrossRefGoogle Scholar
  20. Otterbein LE, Zuckerbraun BS, Haga M, Liu F, Song R, Usheva A, Stachulak C, Bodyak N, Smith RN, Csizmadia E, Tyagi S, Akamatsu Y, Flavell RJ, Billiar TR, Tzeng E, Bach FH, Choi AM, Soares MP (2003) Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 9:183–190PubMedCrossRefGoogle Scholar
  21. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517PubMedGoogle Scholar
  22. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801PubMedCrossRefGoogle Scholar
  23. Panner A, Wurster RD (2006) T-type calcium channels and tumor proliferation. Cell Calcium 40:253–259PubMedCrossRefGoogle Scholar
  24. Peers C, Boyle JP, Scragg JL, Dallas ML, Al-Owais MM, Hettiarachichi NT, Elies J, Johnson E, Gamper N, Steele DS (2015) Diverse mechanisms underlying the regulation of ion channels by carbon monoxide. Br J Pharmacol 172:1546–1556Google Scholar
  25. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161PubMedCrossRefGoogle Scholar
  26. Ramlawi B, Scott JR, Feng J, Mieno S, Raman KG, Gallo D, Csizmadia E, Yoke CB, Bach FH, Otterbein LE, Sellke FW (2007) Inhaled carbon monoxide prevents graft-induced intimal hyperplasia in swine. J Surg Res 138:121–127PubMedCrossRefGoogle Scholar
  27. Richard S, Neveu D, Carnac G, Bodin P, Travo P, Nargeot J (1992) Differential expression of voltage-gated Ca(2+)-currents in cultivated aortic myocytes. Biochim Biophys Acta 1160:95–104PubMedCrossRefGoogle Scholar
  28. Rodman DM, Reese K, Harral J, Fouty B, Wu S, West J, Hoedt-Miller M, Tada Y, Li KX, Cool C, Fagan K, Cribbs L (2005) Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes. Circ Res 96:864–872PubMedCrossRefGoogle Scholar
  29. Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650PubMedCrossRefGoogle Scholar
  30. Schmitt R, Clozel JP, Iberg N, Buhler FR (1995) Mibefradil prevents neointima formation after vascular injury in rats. Possible role of the blockade of the T-type voltage-operated calcium channel. Arterioscler Thromb Vasc Biol 15:1161–1165PubMedCrossRefGoogle Scholar
  31. Scragg JL, Dallas ML, Wilkinson JA, Varadi G, Peers C (2008) Carbon monoxide inhibits L-type Ca2+ channels via redox modulation of key cysteine residues by mitochondrial reactive oxygen species. J Biol Chem 283:24412–24419PubMedCrossRefPubMedCentralGoogle Scholar
  32. Telezhkin V, Brazier SP, Mears R, Muller CT, Riccardi D, Kemp PJ (2011) Cysteine residue 911 in C-terminal tail of human BK(Ca)alpha channel subunit is crucial for its activation by carbon monoxide. Pflugers Arch 461:665–675PubMedCrossRefGoogle Scholar
  33. Tzeng BH, Chen YH, Huang CH, Lin SS, Lee KR, Chen CC (2012) The Cav3.1 T-type calcium channel is required for neointimal formation in response to vascular injury in mice. Cardiovasc Res 96:533–542PubMedCrossRefGoogle Scholar
  34. Wamhoff BR, Bowles DK, Owens GK (2006) Excitation-transcription coupling in arterial smooth muscle. Circ Res 98:868–878PubMedCrossRefGoogle Scholar
  35. Williams SE, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, Peers C, Kemp PJ (2004) Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306:2093–2097PubMedCrossRefGoogle Scholar
  36. Zhang W, Halligan KE, Zhang X, Bisaillon JM, Gonzalez-Cobos JC, Motiani RK, Hu G, Vincent PA, Zhou J, Barroso M, Singer HA, Matrougui K, Trebak M (2011) Orai1-mediated I (CRAC) is essential for neointima formation after vascular injury. Circ Res 109:534–542PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hayley Duckles
    • 1
  • Moza M. Al-Owais
    • 2
  • Jacobo Elies
    • 2
  • Emily Johnson
    • 2
  • Hannah E. Boycott
    • 3
  • Mark L. Dallas
    • 4
  • Karen E. Porter
    • 2
  • John P. Boyle
    • 2
  • Jason L. Scragg
    • 2
  • Chris Peers
    • 5
    Email author
  1. 1.Department of Cardiovascular Science, Medical SchoolUniversity of SheffieldSheffieldUK
  2. 2.Division of Cardiovascular and Diabetes Research, LIGHT, Faculty of Medicine and HealthUniversity of LeedsLeedsUK
  3. 3.Life Sciences CentreUniversity of British ColumbiaVancouverCanada
  4. 4.School of PharmacyUniversity of ReadingReadingUK
  5. 5.Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and HealthUniversity of LeedsLeedsUK

Personalised recommendations