Advertisement

Respiratory Control in the mdx Mouse Model of Duchenne Muscular Dystrophy

  • David P. BurnsEmail author
  • Deirdre Edge
  • Dervla O’Malley
  • Ken D. O’Halloran
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 860)

Abstract

Duchenne muscular dystrophy (DMD) is a genetic disease caused by defects in the dystrophin gene resulting in loss of the structural protein dystrophin. Patients have reduced diaphragm functional capacity due to progressive muscle weakness. Respiratory morbidity in DMD is further characterised by hypoxaemic periods due to hypoventilation. DMD patients die prematurely due to respiratory and cardiac failure. In this study, we examined respiratory function in young adult male mdx (dystrophin deficient) mice (C57BL/10ScSn-Dmdmdx/J; n = 10) and in wild-type controls (WT; C57BL/10ScSnJ; n = 11). Breathing was assessed in unrestrained, unanaesthetised animals by whole-body plethysmography. Ventilatory parameters were recorded during air breathing and during exposure to acute hypoxia (FiO2 = 0.1, 20 min). Data for the two groups of animals were compared using Student’s t tests. During normoxic breathing, mdx mice had reduced breathing frequency (p = 0.011), tidal volume (p = 0.093) and minute ventilation (p = 0.033) compared to WT. Hypoxia increased minute ventilation in WT and mdx animals. Mdx mice had a significantly increased ventilatory response to hypoxia which manifest as an elevated % change from baseline for minute ventilation (p = 0.0015) compared to WT. We conclude that mdx mice have impaired normoxic ventilation suggestive of hypoventilation. Furthermore, mdx mice have an enhanced hypoxic ventilatory response compared to WT animals which we speculate may be secondary to chronic hypoxaemia. Our results indicate that a significant respiratory phenotype is evident as early as 8 weeks in the mdx mouse model of DMD.

Keywords

Duchenne muscular dystrophy mdx Control of breathing Plethysmography Hypoxic ventilatory response Neuromuscular disease 

Notes

Acknowledgements

Supported by the Department of Physiology, University College Cork, Cork, Ireland. DOM and KOH are funded by Muscular Dystrophy Ireland.

References

  1. Barbé F, Quera-Salva MA, Mccann C, Gajdos P, Raphael JC, De Lattre J, Agustí AG (1994) Sleep-related respiratory disturbances in patients with Duchenne muscular dystrophy. Eur Respir J 7:1403–1408PubMedCrossRefGoogle Scholar
  2. Beck J, Weinberg J, Hamnegård CH, Spahija J, Olofson J, Grimby G, Sinderby C (2006) Diaphragmatic function in advanced Duchenne muscular dystrophy. Neuromuscul Disord 16:161–167PubMedCrossRefGoogle Scholar
  3. Bulfield G, Siller WG, Wight PA, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A 81:1189–1192PubMedCrossRefPubMedCentralGoogle Scholar
  4. Carberry JC, Mcmorrow C, Bradford A, Jones JF, O’Halloran KD (2014) Effects of sustained hypoxia on sternohyoid and diaphragm muscle during development. Eur Respir J 43:1149–1158PubMedCrossRefGoogle Scholar
  5. Coirault C, Pignol B, Cooper RN, Butler-Browne G, Chabrier PE, Lecarpentier Y (2003) Severe muscle dysfunction precedes collagen tissue proliferation in mdx mouse diaphragm. J Appl Physiol (1985) 94:1744–1750CrossRefGoogle Scholar
  6. De Bruin PF, Ueki J, Bush A, Khan Y, Watson A, Pride NB (1997) Diaphragm thickness and inspiratory strength in patients with Duchenne muscular dystrophy. Thorax 52:472–475PubMedCrossRefPubMedCentralGoogle Scholar
  7. Gayraud J, Matecki S, Hnia K, Mornet D, Prefaut C, Mercier J, Michel A, Ramonatxo M (2007) Ventilation during air breathing and in response to hypercapnia in 5 and 16 month-old mdx and C57 mice. J Muscle Res Cell Motil 28:29–37PubMedCrossRefPubMedCentralGoogle Scholar
  8. Gosselin LE, Barkley JE, Spencer MJ, Mccormick KM, Farkas GA (2003) Ventilatory dysfunction in mdx mice: impact of tumor necrosis factor-alpha deletion. Muscle Nerve 28:336–343PubMedCrossRefGoogle Scholar
  9. Han F, Subramanian S, Dick TE, Dreshaj IA, Strohl KP (2001) Ventilatory behavior after hypoxia in C57BL/6J and A/J mice. J Appl Physiol (1985) 91:1962–1970Google Scholar
  10. Han F, Subramanian S, Price ER, Nadeau J, Strohl KP (2002) Periodic breathing in the mouse. J Appl Physiol (1985) 92:1133–1140CrossRefGoogle Scholar
  11. Hill NS, Redline S, Carskadon MA, Curran FJ, Millman RP (1992) Sleep-disordered breathing in patients with Duchenne muscular dystrophy using negative pressure ventilators. Chest 102:1656–1662PubMedCrossRefGoogle Scholar
  12. Huang P, Cheng G, Lu H, Aronica M, Ransohoff RM, Zhou L (2011) Impaired respiratory function in mdx and mdx/utrn(+/-) mice. Muscle Nerve 43:263–267PubMedCrossRefPubMedCentralGoogle Scholar
  13. Huey KA, Low MJ, Kelly MA, Juarez R, Szewczak JM, Powell FL (2000) Ventilatory responses to acute and chronic hypoxia in mice: effects of dopamine D(2) receptors. J Appl Physiol (1985) 89:1142–1150Google Scholar
  14. Inkley SR, Oldenburg FC, Vignos PJ (1974) Pulmonary function in Duchenne muscular dystrophy related to stage of disease. Am J Med 56:297–306PubMedCrossRefGoogle Scholar
  15. Ishizaki M, Suga T, Kimura E, Shiota T, Kawano R, Uchida Y, Uchino K, Yamashita S, Maeda Y, Uchino M (2008) Mdx respiratory impairment following fibrosis of the diaphragm. Neuromuscul Disord 18:342–348PubMedCrossRefGoogle Scholar
  16. Kirk VG, Flemons WW, Adams C, Rimmer KP, Montgomery MD (2000) Sleep-disordered breathing in Duchenne muscular dystrophy: a preliminary study of the role of portable monitoring. Pediatr Pulmonol 29:135–140PubMedCrossRefGoogle Scholar
  17. Krieger J, Sforza E, Apprill M, Lampert E, Weitzenblum E, Ratomaharo J (1989) Pulmonary hypertension, hypoxemia, and hypercapnia in obstructive sleep apnea patients. Chest 96:729–737PubMedCrossRefGoogle Scholar
  18. Kumar P, Prabhakar NR (2012) Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2:141–219PubMedPubMedCentralGoogle Scholar
  19. Manning J, Kulbida R, Rai P, Jensen L, Bouma J, Singh SP, O’Malley D, Yilmazer-Hanke D (2014) Amitriptyline is efficacious in ameliorating muscle inflammation and depressive symptoms in the mdx mouse model of Duchenne muscular dystrophy. Exp Physiol 99:1370–1386PubMedCrossRefGoogle Scholar
  20. Mcmorrow C, Fredsted A, Carberry J, O’Connell RA, Bradford A, Jones JF, O’Halloran KD (2011) Chronic hypoxia increases rat diaphragm muscle endurance and sodium-potassium ATPase pump content. Eur Respir J 37:1474–1481PubMedCrossRefGoogle Scholar
  21. Mosqueira M, Baby SM, Lahiri S, Khurana TS (2013) Ventilatory chemosensory drive is blunted in the mdx mouse model of Duchenne Muscular Dystrophy (DMD). PLoS One 8, e69567PubMedCrossRefPubMedCentralGoogle Scholar
  22. Nowak KJ, Davies KE (2004) Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 5:872–876PubMedCrossRefPubMedCentralGoogle Scholar
  23. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A 90:3710–3714PubMedCrossRefPubMedCentralGoogle Scholar
  24. Powell FL, Milsom WK, Mitchell GS (1998) Time domains of the hypoxic ventilatory response. Respir Physiol 112:123–134PubMedCrossRefGoogle Scholar
  25. Shortt CM, Fredsted A, Chow HB, Williams R, Skelly JR, Edge D, Bradford A, O’Halloran KD (2014) Reactive oxygen species mediated diaphragm fatigue in a rat model of chronic intermittent hypoxia. Exp Physiol 99:688–700PubMedCrossRefGoogle Scholar
  26. Smith PE, Edwards RH, Calverley PM (1989a) Oxygen treatment of sleep hypoxaemia in Duchenne muscular dystrophy. Thorax 44:997–1001PubMedCrossRefPubMedCentralGoogle Scholar
  27. Smith PE, Edwards RH, Calverley PM (1989b) Ventilation and breathing pattern during sleep in Duchenne muscular dystrophy. Chest 96:1346–1351PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • David P. Burns
    • 1
    Email author
  • Deirdre Edge
    • 1
  • Dervla O’Malley
    • 1
  • Ken D. O’Halloran
    • 1
  1. 1.Department of Physiology, School of MedicineUniversity College CorkCorkIreland

Personalised recommendations