Advertisement

Hypoxic Ventilatory Reactivity in Experimental Diabetes

  • M. PokorskiEmail author
  • M. Pozdzik
  • J. Antosiewicz
  • A. Dymecka
  • A. Mazzatenta
  • C. Di Giulio
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 860)

Abstract

Diabetes, apart from generalized neuropathy and microangiopathy, involves tissue hypoxia, which may drive chronic proinflammatory state. However, studies on the ventilatory control in diabetes are sparse and conflicting. In this study we examined the function and morphology of diabetic carotid bodies (CBs). Diabetes was evoked in Wistar rats with streptozotocin (70 mg/kg, i.p.). The acute hypoxic ventilatory responses (HVR) to 12 and 8 % O2 were investigated in conscious untreated rats after 2 and 4 weeks in a plethysmographic chamber. CBs were dissected and subjected to morphologic investigations: (1) electron transmission microscopy for ultrastructure and (2) laser scanning confocal microscopy to visualize the microvascular bed in sections labeled with the lectin Griffonia simplicifolia-I (GSI), an endothelial cell marker, and fluorescein isothiocyanate (FITC). All findings were referenced to the normal healthy rats. We found that diabetes distinctly dampened the HVR. At the ultrastructural level, the diabetic CB displayed proliferation of connective tissue and neovascularization deranging the interglomal structure, and lengthening the O2 diffusion path from capillaries to chemoreceptor cells. The chemoreceptor cells remained largely unchanged. The endothelial cell labeling confirmed the intensive angiopathy and the induction of microvessel growth. We conclude that diabetes hampers the chemical regulation of ventilation due to remodeling of CB parenchyma, which may facilitate chronic hypoxia and inflammation in the organ.

Keywords

Angiopathy Carotid body Chemoreceptor cells Diabetes Endothelial cells Hypoxic ventilatory response Microvasculature Neovascularization 

Notes

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

References

  1. Calverley PM, Ewing AJ, Campbell IW, Wraith PK, Brash HM, Clarke BF, Flenley DC (1982) Preservation of the hypoxic drive to breathing in diabetic autonomic neuropathy. Clin Sci (Lond) 63(1):17–22CrossRefGoogle Scholar
  2. Clarke JA, de Burgh Daly M, Ead HW, Kreclović G (1993) A morphological study of the size of the vascular compartment of the carotid body in a non-human primate (Cercopithecus ethiopus), and a comparison with the cat and rat. Acta Anat (Basel) 147(4):240–247CrossRefGoogle Scholar
  3. Devaraj S, Cheung AT, Jialal I, Griffen SC, Nguyen D, Glaser N, Aoki T (2007) Evidence of increased inflammation and microcirculatory abnormalities in patients with type 1 diabetes and their role in microvascular complications. Diabetes 56(11):2790–2796PubMedCrossRefPubMedCentralGoogle Scholar
  4. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11(2):98–107PubMedCrossRefGoogle Scholar
  5. Eleayu CO, Eleayu KC, Chukwuma S, Essien E (2013) Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord 12:60. doi: 10.1186/2251-6581-12-60 CrossRefGoogle Scholar
  6. Ellenberg M (1958) Diabetic neuropathy presenting as the initial clinical manifestation of diabetes. Ann Intern Med 49(3):620–631PubMedCrossRefGoogle Scholar
  7. Greene AS, Lombard JH, Cowley AW Jr, Hansen-Smith FM (1990) Microvessel changes in hypertension measured by Griffonia simplicifolial lectin. Hypertension 15(6 Pt 2):779–783PubMedCrossRefGoogle Scholar
  8. Hein MS, Schlenker EH, Patel KP (1994) Altered control of ventilation in streptozotocin-induced diabetic rats. Proc Soc Exp Biol Med 207(2):213–219PubMedCrossRefGoogle Scholar
  9. Kageyama S, Sasoh F, Taniguchi I, Homma I, Saito H, Isogai Y (1985) Cardiorespiratory arrest in a patient with advanced diabetic autonomic neuropathy. Diabetes Res Clin Pract 1(4):243–246PubMedCrossRefGoogle Scholar
  10. Lam SY, Tipoe GL, Liong EC, Fung ML (2008) Chronic hypoxia upregulates the expression and function of proinflammatory cytokines in the rat carotid body. Histochem Cell Biol 130(3):549–559PubMedCrossRefGoogle Scholar
  11. Liu X, He L, Stensaas L, Dinger B, Fidone S (2009) Adaptation to chronic hypoxia involves immune cell invasion and increased expression of inflammatory cytokines in rat carotid body. Am J Physiol Lung Cell Mol Physiol 296(2):158–166CrossRefGoogle Scholar
  12. López-Barneo J (2003) Oxygen and glucose sensing by carotid body glomus cells. Curr Opin Neurobiol 13(4):493–499PubMedCrossRefGoogle Scholar
  13. Montserrat JM, Cochrane GM, Wolf C, Picado C, Roca J, Augusti Vidal A (1985) Ventilatory control in diabetes mellitus. Eur J Respir Dis 67(2):112–117PubMedGoogle Scholar
  14. Nishimura M, Miyamoto K, Suzuki A, Yamamoto H, Tsuji M, Kishi F, Kawakami Y (1989) Ventilatory and heart rate responses to hypoxia and hypercapnia in patients with diabetes mellitus. Thorax 44(4):251–257PubMedCrossRefPubMedCentralGoogle Scholar
  15. Persson PB, Henriksson J (2011) Good publication practise in physiology. Acta Physiol 203(4):403–407CrossRefGoogle Scholar
  16. Rasche K, Kelner T, Tautz B, Hader C, Hergenc G, Antosiewicz J, Di Giulio C, Pokorski M (2010) Obstructive sleep apnea and type 2 diabetes. Eur J Med Res 15(Suppl 2):152–156PubMedPubMedCentralGoogle Scholar
  17. Saiki C, Seki N, Furuya H, Matsumoto S (2005) The acute effects of insulin on the cardiorespiratory responses to hypoxia in streptozotocin-induced diabetic rats. Acta Physiol Scand 183(1):107–115PubMedCrossRefGoogle Scholar
  18. Sano T, Umeda F, Hashimoto T, Nawata H, Utsumi H (1998) Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia 41(11):1355–1360PubMedCrossRefGoogle Scholar
  19. Weisbrod CJ, Eastwood PR, O’Driscoll G, Green DJ (2005) Abnormal ventilatory responses to hypoxia in type 2 diabetes. Diabet Med 22(5):563–568PubMedCrossRefGoogle Scholar
  20. White JE, Bullock RE, Hudgson P, Home PD, Gibson GJ (1992) Phrenic neuropathy in association with diabetes. Diabet Med 9(10):954–956PubMedCrossRefGoogle Scholar
  21. Yamazaki H, Okazaki M, Takeda R, Haji A (2002) Hypercapnic and hypoxic ventilatory responses in long-term streptozotocin-diabetic rats during conscious and pentobarbital-induced anesthetic states. Life Sci 72(1):79–89PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • M. Pokorski
    • 1
    • 2
    • 3
    Email author
  • M. Pozdzik
    • 4
  • J. Antosiewicz
    • 4
  • A. Dymecka
    • 4
  • A. Mazzatenta
    • 5
  • C. Di Giulio
    • 5
  1. 1.Laboratory of ElectrophysiologyClinical Research Center, Murayama Medical CenterMusashiMurayama CityJapan
  2. 2.Public Higher Medical Professional SchoolOpolePoland
  3. 3.Institute of PsychologyOpole UniversityOpolePoland
  4. 4.Medical Research CenterPolish Academy of SciencesWarsawPoland
  5. 5.Department of Neurosciences, Imaging and Clinical ScienceUniversity ‘G. d’Annunzio’ of Chieti–PescaraChietiItaly

Personalised recommendations