Skip to main content

A Reaction-Diffusion Simulation Model of [\(^{18}\)F]FDG PET Imaging for the Quantitative Interpretation of Tumor Glucose Metabolism

  • Chapter
  • First Online:
Computational Methods for Molecular Imaging

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 22))

Abstract

Positron emission tomography (PET) using \(^{18}\)F-fludeoxyglucose ([\(^{18}\)F]FDG) improves the cancer diagnosis by visualizing the pathological pathway of Warburg effect. As an analog of glucose, FDG uptake is mediated by glucose transporter (GLUT) and hexokinase (HK), which can be overexpressed under tumor hypoxia conditions. Quantitative interpretation of the images to the feature of tumor microenvironment is important to improve tumor staging and localization. However, it is usually difficult for such kind of quantitative analysis due to the complex metabolic procedure of multi-substance system within tumor. This study proposes a novel reaction-diffusion model to simulate the procedures of FDG: transported into tumor cells, catalyzed by GLUT and phosphorylated by HK leading to the production of FDG-6-phosphate (FDG6P) similar to glucose-6-phosphate (G6P). Hypoxia induced factor-1 (HIF-1) is incorporated to control the upregulations of GLUT and HK. The simulation results are compared with dynamic PET scans of nude mice with lymphoma xenograft tumors, which confirmed that the simulation can approach to real measurements. With this quantitative simulation model, the interaction of FDG to the substances, oxygen, HIF-1, glucose, G6P, and FDG6P within the tumor microenvironment is investigated under various vascularizations. By controlling the expression factor of GLUT and HK, their influences on FDG uptake is further assessed. The preliminary results of the simulation model have shown a potential to improve the quantification of FDG PET image and to assist cancer diagnosis and therapy prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ganapathy, V., Thangaraju, M., Prasad, P.D.: Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol. Therapeutics 121(1), 29–40 (2009)

    Google Scholar 

  2. Burgman, P., et al.: Hypoxia-induced increase in FDG uptake in MCF7 cells. J. Nucl. Med. 42(1), 170–175 (2001)

    Google Scholar 

  3. Muzi, M., et al.: Kinetic characterization of hexokinase isoenzymes from glioma cells: implications for FDG imaging of human brain tumors. Nucl. Med. Biol. 28(2), 107–116 (2001)

    Article  Google Scholar 

  4. Mathupala, S., Ko, Y.A., Pedersen, P.: Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncog. 25(34), 4777–4786 (2006)

    Google Scholar 

  5. Vaupel, P., Kallinowski, F., Okunieff, P.: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49(23), 6449–6465 (1989)

    Google Scholar 

  6. Vaupel, P.: Tumor microenvironmental physiology and its implications for radiation oncology. Semin. Radiat. Oncol. 14(3), 198–206 (2004)

    Article  Google Scholar 

  7. Semenza, G.L.: HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J. Appl. Physiol. 88(4), 1474–1480 (2000)

    Google Scholar 

  8. Semenza, G.L.: Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3(10), 721–732 (2003)

    Article  Google Scholar 

  9. Airley, R., et al.: Glucose transporter glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clin. Cancer Res. 7(4), 928–934 (2001)

    Google Scholar 

  10. Zhang, J.-Z., Behrooz, A., Ismail-Beigi, F.: Regulation of glucose transport by hypoxia. Am. J. Kidney Dis. 34(1), 189–202 (1999)

    Article  Google Scholar 

  11. Yasuda, S., et al.: Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor-1\(\alpha \) and its significance. J. Hepatol. 40(1), 117–123 (2004)

    Article  Google Scholar 

  12. Natsuizaka, M., et al.: Synergistic up-regulation of Hexokinase-2, glucose transporters and angiogenic factors in pancreatic cancer cells by glucose deprivation and hypoxia. Exp. Cell Res. 313(15), 3337–3348 (2007)

    Article  Google Scholar 

  13. Wolf, A., et al.: Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J. Exp. Med. 208(2), 313–326 (2011)

    Article  Google Scholar 

  14. Chen, C., et al.: Regulation of glut1 mRNA by hypoxia-inducible factor-1 interaction between H-ras and hypoxia. J. Biol. Chem. 276(12), 9519–9525 (2001)

    Article  Google Scholar 

  15. Konerding, M., et al.: Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br. J. Cancer 80(5–6), 724 (1999)

    Article  Google Scholar 

  16. Konerding, M., Fait, E., Gaumann, A.: 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br. J. Cancer 84(10), 1354 (2001)

    Article  Google Scholar 

  17. DaÅŸu, A., Toma-DaÅŸu, I., Karlsson, M.: Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys. Med. Biol. 48(17), 2829 (2003)

    Article  Google Scholar 

  18. Kelly, C.J., Brady, M.: A model to simulate tumour oxygenation and dynamic [18F]-Fmiso PET data. Phys. Med. Biol. 51(22), 5859 (2006)

    Article  Google Scholar 

  19. Dalah, E., Bradley, D., Nisbet, A.: Simulation of tissue activity curves of 64Cu-ATSM for sub-target volume delineation in radiotherapy. Phys. Med. Biol. 55(3), 681 (2010)

    Article  Google Scholar 

  20. Petit, S.F., et al.: Intra-voxel heterogeneity influences the dose prescription for dose-painting with radiotherapy: a modelling study. Phys. Med. Biol. 54(7), 2179 (2009)

    Article  Google Scholar 

  21. David, M., et al.: Modelling and simulation of [18F] fluoromisonidazole dynamics based on histology-derived microvessel maps. Phys. Med. Biol. 56(7), 2045 (2011)

    Article  Google Scholar 

  22. Mönnich, D., et al.: Modelling and simulation of the influence of acute and chronic hypoxia on [18F] fluoromisonidazole PET imaging. Phys. Med. Biol. 57(6), 1675 (2012)

    Article  Google Scholar 

  23. Ullah, M.S., Davies, A.J., Halestrap, A.P.: The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1\(\alpha \)-dependent mechanism. J. Biol. Chem. 281(14), 9030–9037 (2006)

    Article  Google Scholar 

  24. Wada, H., et al.: Expression pattern of angiogenic factors and prognosis after hepatic resection in hepatocellular carcinoma: importance of angiopoietin-2 and hypoxia-induced factor-1a. Liver Int. 26(4), 414–423 (2006)

    Article  MathSciNet  Google Scholar 

  25. Jiang, B.-H., et al.: Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol.-Cell Physiol. 271(4), C1172–C1180 (1996)

    Google Scholar 

  26. Leedale, J., et al.: Modeling the dynamics of hypoxia inducible factor-1\(\alpha \) (HIF-1\(\alpha )\) within single cells and 3D cell culture systems. Math. Biosci. 258, 33–43 (2014)

    Article  MathSciNet  Google Scholar 

  27. Kelly, C., Smallbone, K., Brady, M.: Tumour glycolysis: the many faces of HIF. J. Theor. Biol. 254(2), 508–513 (2008)

    Article  MathSciNet  Google Scholar 

  28. Qian, W., et al.: Exploring the quantitative relationship between metabolism and enzymatic phenotype by physiological modeling of glucose metabolism and lactate oxidation in solid tumors. Phys. Med. Biol. 60(6), 2547 (2015)

    Article  Google Scholar 

  29. Bisswanger, H.: Enzyme kinetics: Section 2.6–2.12. Enzyme Kinetics, pp. 124–193. Wiley-VCH Verlag GmbH & Co. KGaA (2008)

    Google Scholar 

  30. Vinnakota, K.C., Beard, D.A.: Kinetic analysis and design of experiments to identify the catalytic mechanism of the monocarboxylate transporter isoforms 4 and 1. Biophys. J. 100(2), 369–380 (2011)

    Article  Google Scholar 

  31. Mueckler, M.: Facilitative glucose transporters. Eur. J. Biochem. 219(3), 713–725 (1994)

    Article  Google Scholar 

  32. Molavian, H.R., et al.: Fingerprint of cell metabolism in the experimentally observed interstitial pH and pO2 in solid tumors. Cancer Res. 69(23), 9141–9147 (2009)

    Article  Google Scholar 

  33. Casciari, J., Sotirchos, S., Sutherland, R.: Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids. Cell Prolif. 25(1), 1–22 (1992)

    Article  Google Scholar 

  34. Casciari, J.J., Sotirchos, S.V., Sutherland, R.M.: Glucose diffusivity in multicellular tumor spheroids. Cancer Res. 48(14), 3905–3909 (1988)

    Google Scholar 

  35. Nishimura, H., et al.: Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes. J. Biol. Chem. 268(12), 8514–8520 (1993)

    Google Scholar 

  36. Rivenzon-Segal, D., et al.: Glucose transporters and transport kinetics in retinoic acid-differentiated T47D human breast cancer cells. Am. J. Physiol.-Endocrinol. Metab. 279(3), E508–E519 (2000)

    Google Scholar 

  37. Rodríguez-Enríquez, S., et al.: Kinetics of transport and phosphorylation of glucose in cancer cells. J. Cell. Physiol. 221(3), 552–559 (2009)

    Article  Google Scholar 

  38. Smith, T.A., et al.: Decreased [18F] fluoro-2-deoxy-d-glucose incorporation and increased glucose transport are associated with resistance to 5FU in MCF7 cells in vitro. Nucl. Med. Biol. 34(8), 955–960 (2007)

    Article  Google Scholar 

  39. Marín-Hernández, A., et al.: Determining and understanding the control of glycolysis in fast-growth tumor cells. FEBS J. 273(9), 1975–1988 (2006)

    Article  Google Scholar 

  40. Höckel, M., et al.: Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements. Cancer Res. 51(22), 6098–6102 (1991)

    Google Scholar 

  41. Vaupel, P., et al.: Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 51(12), 3316–3322 (1991)

    Google Scholar 

  42. Lee, T.S., et al.: Comparison of 18 F-FDG, 18 F-FET and 18 F-FLT for differentiation between tumor and inflammation in rats. Nucl. Med. Biol. 36(6), 681–686 (2009)

    Article  Google Scholar 

  43. Piert, M., et al.: Positron detection for the intraoperative localisation of cancer deposits. Eur. J. Nucl. Med. Mol. Imaging 34(10), 1534–1544 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Q., Liu, Z., Ziegler, S.I., Shi, K. (2015). A Reaction-Diffusion Simulation Model of [\(^{18}\)F]FDG PET Imaging for the Quantitative Interpretation of Tumor Glucose Metabolism. In: Gao, F., Shi, K., Li, S. (eds) Computational Methods for Molecular Imaging. Lecture Notes in Computational Vision and Biomechanics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-18431-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18431-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18430-2

  • Online ISBN: 978-3-319-18431-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics