Skip to main content

Robust Feature Selection to Predict Lung Tumor Recurrence

  • Chapter
  • First Online:
Book cover Computational Methods for Molecular Imaging

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 22))

  • 789 Accesses

Abstract

The recurrence of cancer increases the risk of death. The ability to predict such recurrence could be beneficial to planning treatment. We aim to find a predictive feature subset from a series of spatiotemporal PET image characteristics, including SUV-based and texture features, in order to predict lung tumor recurrence one year after treatment. To overcome the small sample size, class imbalance problem, we propose a hierarchical forward selection algorithm to select the smallest feature subset that results in the best prediction performance. As the SUV-based features have been recognized as significant predictive factors for a patient’s outcome, we propose incorporating this prior knowledge into the selection procedure to improve its robustness and accelerate its convergence. By fixing the first feature as one SUV parameter, the proposed hierarchical forward selection yields a small robust feature subset with promising prediction performance.

This work is partly supported by China Scholarship Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canu, S., Grandvalet, Y., Guigue, V., Rakotomamonjy, A.: SVM and kernel methods Matlab toolbox. Perception Systèmes et Information, INSA de Rouen, Rouen, France (2005)

    Google Scholar 

  2. Chen, Xw, Wasikowski, M.: FAST: A roc-based feature selection metric for small samples and imbalanced data classification problems. In: ACM SIGKDD, KDD’08, pp. 124–132. ACM, New York (2008). doi:10.1145/1401890.1401910

  3. El Naqa, I., Grigsby, P., Apte, A., Kidd, E., Donnelly, E., Khullar, D., Chaudhari, S., Yang, D., Schmitt, M., Laforest, R., et al.: Exploring feature-based approaches in pet images for predicting cancer treatment outcomes. Pattern Recognit. 42(6), 1162–1171 (2009)

    Article  Google Scholar 

  4. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. JMLR 3, 1157–1182 (2003)

    MATH  Google Scholar 

  5. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

    Article  MATH  Google Scholar 

  6. He, H., Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  7. Mi, H., Petitjean, C., Dubray, B., Vera, P., Ruan, S.: Prediction of lung tumor evolution during radiotherapy in individual patients with PET. IEEE Trans. Med. Image 33(4), 995–1003 (2014)

    Article  Google Scholar 

  8. Roman-Jimenez, G., Leseur, J., Devillers, A., David, J.: Segmentation and characterization of tumors in 18F-FDG PET-CT for outcome prediction in cervical cancer radio-chemotherapy. Image-Guidance and Multimodal Dose Planning in Radiation Therapy, p. 17 (2012)

    Google Scholar 

  9. Somol, P., Novovicova, J.: Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 1921–1939 (2010)

    Article  Google Scholar 

  10. Tan, S., Kligerman, S., Chen, W., Lu, M., Kim, G., Feigenberg, S., D’Souza, W.D., Suntharalingam, M., Lu, W.: Spatial-temporal [18F] FDG-PET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int. J. Radiat. Oncol.* Biol.* Phys. 85(5), 1375–1382 (2013)

    Article  Google Scholar 

  11. Tixier, F., Hatt, M., Le Rest, C.C., Le Pogam, A., Corcos, L., Visvikis, D.: Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J. Nucl. Med. 53(5), 693–700 (2012)

    Article  Google Scholar 

  12. Wang, L.: Feature selection with kernel class separability. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1534–1546 (2008)

    Article  Google Scholar 

  13. Yang, F., Mao, K.: Robust feature selection for microarray data based on multicriterion fusion. IEEE/ACM TCBB 8(4), 1080–1092 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Mi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mi, H., Petitjean, C., Vera, P., Ruan, S. (2015). Robust Feature Selection to Predict Lung Tumor Recurrence. In: Gao, F., Shi, K., Li, S. (eds) Computational Methods for Molecular Imaging. Lecture Notes in Computational Vision and Biomechanics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-18431-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18431-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18430-2

  • Online ISBN: 978-3-319-18431-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics