Skip to main content

Forecasting Daily Urban Water Demand Using Dynamic Gaussian Bayesian Network

  • Conference paper
Beyond Databases, Architectures and Structures (BDAS 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 521))

Abstract

The objective of the presented research is to create effective forecasting system for daily urban water demand. The addressed problem is crucial for cost-effective, sustainable management and optimization of water distribution systems. In this paper, a dynamic Gaussian Bayesian network (DGBN) predictive model is proposed to be applied for the forecasting of a hydrological time series. Different types of DGBNs are compared with respect to their structure and the corresponding effectiveness of prediction. First, it has been found that models based on the automatic learning of network structure are not the most effective, and they are outperformed by models with the designed structure. Second, this paper proposes a simple but effective structure of DGBN. The presented comparative experiments provide evidence for the superiority of the designed model, which outperforms not only other DGBNs but also other state-of-the-art forecasting models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, B., Brown, J., Edwards, W., Murphy, A., Winkler, R.L.: Hailfinder: A Bayesian system for forecasting severe weather. International Journal of Forecasting 12(1), 57–71 (1996)

    Article  Google Scholar 

  2. Adamowski, J., Adamowski, K., Prokoph, A.: A spectral analysis based methodology to detect climatological influences on daily urban water demand. Mathematical Geosciences 45(1), 49–68 (2013)

    Article  MathSciNet  Google Scholar 

  3. Billings, R.B., Jones, C.V.: Forecasting urban Water Demand. American Water Works Association (2008)

    Google Scholar 

  4. Biondi, D., De Luca, D.L.: Performance assessment of a bayesian forecasting system (bfs) for real-time flood forecasting. Journal of Hydrology 479, 51–63 (2013)

    Article  Google Scholar 

  5. Bougadis, J., Adamowski, K., Diduch, R.: Short-term municipal water demand forecasting. Hydrological Processes 19(1), 137–148 (2005)

    Article  Google Scholar 

  6. Cowpertwait, P.S.P., Metcalfe, A.V.: Introductory Time Series with R, 1st edn. Springer Publishing Company, Incorporated (2009)

    Google Scholar 

  7. Diebold, F.X., Mariano, R.S.: Comparing predictive accuracy. Journal of Business and Economic Statistics 13(3), 253–263 (1995)

    Google Scholar 

  8. Donkor, E., Mazzuchi, T., Soyer, R., Roberson, A.J.: Urban water demand forecasting: Review of methods and models. Journal of Water Resources Planning and Management 140(2), 146–159 (2014)

    Article  Google Scholar 

  9. Firat, M., Turan, M.E., Yurdusev, M.A.: Comparative analysis of neural network techniques for predicting water consumption time series. Journal of Hydrology 384(1-2), 46–51 (2010)

    Article  Google Scholar 

  10. Froelich, W., Papageorgiou, E.I.: Extended evolutionary learning of fuzzy cognitive maps for the prediction of multivariate time-series. In: Papageorgiou, E.I. (ed.) Fuzzy Cognitive Maps for Applied Sciences and Engineering. ISRL, vol. 54, pp. 121–131. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  11. Froelich, W., Salmeron, J.L.: Evolutionary learning of fuzzy grey cognitive maps for the forecasting of multivariate, interval-valued time series. International Journal of Approximate Reasoning 55(6), 1319–1335 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Herrera, M., Torgo, L., Izquierdo, J., Pérez-García, R.: Predictive models for forecasting hourly urban water demand. Journal of Hydrology 387(1-2), 141–150 (2010)

    Article  Google Scholar 

  13. Hyndman, R.J., Kostenko, A.V.: Minimum sample size requirements for seasonal forecasting models. The International Journal of Applied Forecasting 6, 12–15 (2007)

    Google Scholar 

  14. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer (2001)

    Google Scholar 

  15. Juszczuk, P., Froelich, W.: Learning fuzzy cognitive maps using a differential evolution algorithm. Polish Journal of Environmental Studies 12(3B), 108–112 (2009)

    Google Scholar 

  16. Machiwal, D., Jha, M.K.: Hydrologic Time Series Analysis: Theory and Practice. Springer (2012)

    Google Scholar 

  17. package, R.: http://www.r-project.org

  18. Preis, A., Whittle, A.J., Ostfeld, A., Perelman, L.: Efficient hydraulic state estimation technique using reduced models of urban water networks. Journal of Water Resources Planning and Management (2011)

    Google Scholar 

  19. Pulido-Calvo, I., Gutiérrez-Estrada, J.C.: Improvedfrigation water demand forecasting using a soft-computing hybrid model. Biosystems Engineering 102(2), 202–218 (2009)

    Article  Google Scholar 

  20. Pulido-Calvo, I., Montesinos, P., Roldán, J., Ruiz-Navarro, F.: Linear regressions and neural approaches to water demand forecasting in irrigation districts with telemetry systems. Biosystems Engineering 97(2), 283–293 (2007)

    Article  Google Scholar 

  21. Qi, C., Chang, N.B.: System dynamics modeling for municipal water demand estimation in an urban region under uncertain economic impacts. Journal of Environmental Management 92(6), 1628–1641 (2011)

    Article  Google Scholar 

  22. Scutari, M.: Bayesian network structure learning, parameter learning and inferenceg (2014), http://www.bnlearn.com/

  23. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its Applications. Springer (2000)

    Google Scholar 

  24. Vlachopoulou, M., Chin, G., Fuller, J.C., Lu, S., Kalsi, K.: Model for aggregated water heater load using dynamic bayesian networks. In: Proceedings of the DMIN 2012 International Conference on Data Mining, pp. 1–7 (2012)

    Google Scholar 

  25. Zhou, S.L., McMahon, T.A., Walton, A., Lewis, J.: Forecasting daily urban water demand: a case study of melbourne. Journal of Hydrology 236(3-4), 153–164 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Froelich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Froelich, W. (2015). Forecasting Daily Urban Water Demand Using Dynamic Gaussian Bayesian Network. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. BDAS 2015. Communications in Computer and Information Science, vol 521. Springer, Cham. https://doi.org/10.1007/978-3-319-18422-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18422-7_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18421-0

  • Online ISBN: 978-3-319-18422-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics