Skip to main content

Optic Disc Recognition Method for Retinal Images

  • Conference paper
  • First Online:
Soft Computing Applications

Abstract

This paper proposes a new optic disc recognition method in colour retinal images. Our previous approaches localized the optic disc in two steps: (a) in the green component of RGB image the optic disc area is detected based on texture indicators and pixel intensity variance analysis; (b) on the segmented area the optic disc edges are extracted and the resulted boundary is approximated by a Hough transform. The new method localizes the optic disc area by analysis of blood vessels network extracted in the green channel of the original image. Then, using an iterative approach, in the segmented area the optic disc edges are approximated by a circle Hough transform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aquino A, Gegundez-Arias ME, Marin D (2010) Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans Med Imaging 29(11):1860–1869

    Article  Google Scholar 

  2. Harangi B, Hajdu A (2012) Improving the accuracy of optic disc detection by finding maximal weighted clique of multiple candidates of individual detectors. In: IEEE 9th international symposium on biomedical imaging, ISBI 2012, Barcelona, Spain, pp 602–605

    Google Scholar 

  3. Harangi B, Qureshi RJ, Csutak A, Peto T, Hajdu A (2010) Automatic detection of the optic disc using majority voting in a collection of optic disc detectors. In: IEEE 7th international symposium on biomedical imaging, ISBI 2010, Rotterdam, The Netherlands, pp 1329–1332

    Google Scholar 

  4. Lalonde M, Beaulieu M, Gagnon L (2001) Fast and robust optic disk detection using pyramidal decomposition and Hausdorff-based template matching. IEEE Trans Med Imaging 20:1193–1200

    Article  Google Scholar 

  5. Li H, Chutatape O (2004) Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng 51(2):246–254

    Article  Google Scholar 

  6. Hoover A, Goldbaum M (2003) Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 22(8):951–958

    Article  Google Scholar 

  7. Foracchia M, Grisan E, Ruggeri A (2004) Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans Med Imaging 23(10):1189–1195

    Article  Google Scholar 

  8. Welfer D, Scharcanski J, Kitamura CM, DalPizzol MM (2010) Segmentation of the optic disk in color eye fundus images using an adaptive. Comput Biol Med 40(2):124–137

    Article  Google Scholar 

  9. Manikis GC, Sakkalis V, Zabulis X, Karamaounas P, Triantafyllow A, Douma S, Zamboulis CH, Marias K (2011) An image analysis framework for the early assessement of hypertensive retinopathy signs. In: Proceedings of the 3rd IEEE international conference on e-health and bioengineering—EHB 2011, 24–26 Nov 2011, Iaşi, Romania, pp 413–418

    Google Scholar 

  10. Niemeijer M, Abramoff MD, Ginneken BV (2007) Segmentation of the optic disc macula and vascular arch in fundus photographs. IEEE Trans Med Imaging 26:116–127

    Article  Google Scholar 

  11. Sopharak A, Thet Nwe K, Aye Moe Y, Dailey MN, Uyyanonvara B (2008) Automatic exudate detection with a naive Bayes classifier. In: International conference on embedded systems and intelligent technology, Grand Mercure Fortune Hotel, Bangkok, Thailand, pp 139–142

    Google Scholar 

  12. Ravishankar S, Jain A, Mittal A (2009) Automated feature extraction for early detection of diabetic retinopathy in fundus images. In: CVPR—IEEE conference on computer vision and pattern recognition, pp 210–217

    Google Scholar 

  13. Kovacs L, Qureshi RJ, Naghi B, Harangi B, Hajdu A (2010) Graph based detection of optic disc and fovea in retinal images. In: IEEE 4th international workshop on soft computing applications, Arad, Romania, 15–17 July 2010, pp 143–148

    Google Scholar 

  14. Heneghan C, Flynn J, O’Keefe M, Cahill M (2002) Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Med Image Anal 6:407–429

    Article  Google Scholar 

  15. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  MathSciNet  Google Scholar 

  16. Tobin KW, Chaum E, Govindasamy VP, Karnowski TP (2007) Detection of anatomic structures in human retinal imagery. IEEE Trans Med Imaging 26(12):1729–1739

    Article  Google Scholar 

  17. Park M, Jin JS, Luo S (2006) Locating the optic disc in retinal images. In: Proceedings of the international conference on computer graphics, imaging, and visualisation, IEEE, Sydney, Australia, pp 14–145

    Google Scholar 

  18. Sinthanayothin C, Boyce JF, Cook HL, Williamson TH (1999) Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 83:902–910

    Article  Google Scholar 

  19. Youssif AA-HA-R, Ghalwash AZ, Ghoneim AASA-R (2008) Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans Med Imaging 27(1):11–18

    Google Scholar 

  20. Sopharak A, Uyyanonvara B, Barman S, Williamson TH (2008) Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput Med Imaging Graph 32:720–727

    Article  Google Scholar 

  21. Rotaru F, Bejinariu S, Niţă CD, Luca R, Lazăr C (2013) New optic disc localization approach in retinal images. In: The 4th IEEE international conference on e-health and bioengineering, EHB 2013, Iasi, Romania, 21–23 Nov 2013, pp 1–4

    Google Scholar 

  22. Lowell J, Hunter A, Steel D, Basu A, Ryder R, Fletcher E, Kennedy L (2004) Optic nerve head segmentation. IEEE Trans Med Imaging 23(2):256–264

    Article  Google Scholar 

  23. Fleming AD, Goatman KA, Philip S, Olson JA, Sharp PF (2007) Automatic detection of retinal anatomy to assist diabetic retinopathy screening. Phys Med Biol 52(2):331–345

    Article  Google Scholar 

  24. Carmona EJ, Rincon M, Garcıa-Feijoo J, de-la Casa JMM (2008) Identification of the optic nerve head with genetic algorithms. Artif Intell Med 43(3):243–259

    Google Scholar 

  25. Lupascu CA, Tegolo D, Rosa LD (2008) Automated detection of optic disc location in retinal images. In: 21st IEEE international symposium on computer-based medical systems, IEEE, University of Jyvaskyla, Finland, pp 17–22

    Google Scholar 

  26. Walter T, Klein J-C, Massin P, Erginay A (2002) A contribution of image processing to the diagnosis of diabetic retinopathy—detection of exudates in color fundus images of the human retina. Trans Med Imaging 21(10):1236–1243

    Article  Google Scholar 

  27. Rotaru F, Bejinariu S, Niţă CD, Costin M (2013) Optic disc localization in retinal images. In: 5th IEEE international workshop on soft computing applications, 23–25 Aug 2012, Szeged, Hungary. Soft computing applications—advances in intelligent systems and computing, vol 195, Springer, pp 453–463

    Google Scholar 

  28. Rotaru F, Bejinariu S, Niţă CD, Luca R (2013) New optic disc localization method for retinal images. In: IEEE international symposium on signal, circuits and systems, ISSCS 2013, Iasi, Romania, 11–12 July 2013

    Google Scholar 

  29. Guo Y (2010) Computer-aided detection of breast cancer using ultrasound images. Ph. D. thesis, Utah State University

    Google Scholar 

Download references

Acknowledgments

The work was done as part of the research collaboration with University of Medicine and Pharmacy “Gr. T. Popa” Iaşi to analyse retinal images for early prevention of ophthalmic diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin Rotaru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rotaru, F., Bejinariu, S.I., Niţă, C.D., Luca, R., Luca, M., Ignat, A. (2016). Optic Disc Recognition Method for Retinal Images. In: Balas, V., Jain, L., Kovačević, B. (eds) Soft Computing Applications. Advances in Intelligent Systems and Computing, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-319-18416-6_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18416-6_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18415-9

  • Online ISBN: 978-3-319-18416-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics