Skip to main content

Analysis of Risk Related to Carbon Dioxide Pipeline Transport

  • Chapter
  • First Online:
Book cover Advances in Carbon Dioxide Compression and Pipeline Transportation Processes

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 754 Accesses

Abstract

This chapter presents an analysis of the hazards and risk related to CO2 transport from power plants to potential storage sites. Potential hazardous effects of an uncontrollable release of CO2 caused by a pipeline failure are shown and the risk level in areas surrounding the pipeline is determined. It also presents a probabilistic model of corrosion wear of the pipeline walls and an assessment of the rise in the gas leakage probability. An analysis of the possibility of reducing the level risk related to pipeline transporting CO2 by means safety valves is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi T, Abbasi SA (2007) The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management. J Hazard Mater 141:489–519

    Article  Google Scholar 

  • Ahammed M (1998) Probabilistic estimation of remaining life of a pipeline in the presence of active corrosion defects. Int J Press Vessels Pip 75:321–329

    Article  Google Scholar 

  • Benson SM (2006) Carbon dioxide capture and storage assessment of risks from storage of carbon dioxide in deep underground geological formations. Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley

    Google Scholar 

  • Bjerketvedt D, Egeberg K, Ke W, Gaathaug A, Vagsaether K, Nilsen SH (2011) Boiling liquid expanding vapour explosion in CO2 small scale experiments. Energy Procedia 4:2285–2292

    Article  Google Scholar 

  • Cameron IT, Raman R (2005) Process systems risk management. Elsevier, Amsterdam

    Google Scholar 

  • Cole IS, Corrigan P, Sim S, Birbilis N (2011) Corrosion of pipelines used for CO2 transport in CCS: is it a real problem? Int J Greenh Gas Control 5:749–756

    Article  Google Scholar 

  • Condor J, Unatrakarn D, Wilson M, Asghari K (2011) A comparative analysis of risk assessment methodologies for the geologic storage of carbon dioxide. Energy Procedia 4:4036–4043

    Article  Google Scholar 

  • Deel D, Mahajan K (2008) Risk assessment and management for long-term storage of CO2 in geologic formations—United States Department of Energy R&D. J Syst Cybner Inform 5:79–84

    Google Scholar 

  • Det Norske Veritas (2010) Design and operation of CO2 pipelines. Recommended practice, DNV-RP-J202

    Google Scholar 

  • Duncan IJ, Wang H (2014) Estimating the likelihood of pipeline failure in CO2 transmission pipelines: new insights on risk of carbon capture and storage. Int J Greenh Gas Control 21:49–60

    Article  Google Scholar 

  • Eldevik F, Graver B, Torbergsen LE, Saugerud OT (2009) Development of a guideline for safe, reliable and cost efficient transmission of CO2 in pipelines. Energy Procedia 1:1579–1585

    Article  Google Scholar 

  • Gale J, Davison J (2004) Transmission of CO2—safety and economic considerations. Energy 29:1319–1328

    Article  Google Scholar 

  • Gerboni R, Salvador E (2009) Hydrogen transportation systems: elements of risk analysis. Energy 34:2223–2229

    Article  Google Scholar 

  • Koornneef J, Spruijt M, Molag M, Ramirez A, Turkenburg W, Faaij A (2010) Quantitative risk assessment of CO2 transport by pipelines—a review of uncertainties and their impacts. J Hazard Mater 177:12–27

    Article  Google Scholar 

  • LaChance J, Tchouvelev A, Engebo A (2011) Development of uniform harm criteria for use in quantitative risk analysis of the hydrogen infrastructure. Int J Hydrogen Energy 36:2381–2388

    Article  Google Scholar 

  • McGillivray A, Wilday J (2009) Comparison of risks from carbon dioxide and natural gas pipelines, HSE report no 749

    Google Scholar 

  • McGillivray A, Saw JU, Lisbona D, Wardman M, Bilio M (2014) A risk assessment methodology for high pressure CO2 pipelines using integral consequence modelling. Process Saf Environ Prot 92:17–26

    Article  Google Scholar 

  • Molag M, Dam C (2011) Modelling of accidental releases from high pressure CO2 pipelines. Energy Procedia 4:2301–2307

    Article  Google Scholar 

  • Murvay P-S, Silea I (2012) A survey on gas leak detection and localization techniques. J Loss Prev Process Ind 25:966–973

    Article  Google Scholar 

  • Orazem M (2014) Underground pipeline corrosion, 1st edn. Woodhead Publishing, Amsterdam

    Google Scholar 

  • Rosyid OA, Jablonski D, Hauptmanns U (2007) Risk analysis for the infrastructure of hydrogen economy. Int J Hydrogen Energy 32:3194–3200

    Article  Google Scholar 

  • Rusin A (2008) Awaryjność, niezawodność i ryzyko techniczne w energetyce cieplnej [Failure frequency, reliability and technical risk in thermal power engineering]. Wydawnictwo Politechniki Śląskiej Gliwice

    Google Scholar 

  • Rusin A, Stolecka K (2013) Hazard to the environment caused by carbon capture and storage (CCS) technologies. Pol J Environ Stud 1:205–211

    Google Scholar 

  • Rusin A, Stolecka K (2015) Reducing the risk level for pipelines transporting carbon dioxide and hydrogen by means of optimal safety valves spacing. J Loss Prev Process Ind 33:775–787

    Article  Google Scholar 

  • Shuter D, Bilio M, Wilday J, Murray L, Whitbread R (2011) Safety issues and research priorities for CCS systems and infrastructure. Energy Procedia 4:2261–2268

    Article  Google Scholar 

  • Sokólski W (2004) Bezpośrednia ocena procesów korozji jako element bezpieczeństwa eksploatacji rurociągów [Direct assessment of corrosion processes as an element of pipeline operation safety]. In: 7th national conference corrosion measurements in electrochemical protection, Jurata

    Google Scholar 

  • Stewart MG, Melchers RE (1997) Probabilistic risk assessment of engineering systems. Chapman and Hall, London

    Google Scholar 

  • Stolten D, Scherer V (2011) Efficient carbon capture for coal power plants. Wiley-VCH, Weinheim

    Google Scholar 

  • Teixeina AP, Guedes Soares C, Netto TA, Estefen SF (2008) Reliability of pipelines with corrosion defects, Int J Press Vessel Pip 85(4):228–237

    Google Scholar 

  • UDM Theory Document (2009) DNV software

    Google Scholar 

  • Uliasz-Misiak B (2011) Wpływ geologicznego składowania CO2 na środowisko [Environmental impact of CO2 geological storage], Gospodarka Surowcami Mineralnymi, Book 1, vol 27, pp 129–143

    Google Scholar 

  • Van der Voort MM, Van Wees RMM, Hamb JM, Spruijt MPN, Van der Berg AC, De Bruijn PCJ, Van Ierschot PGA (2011) An experimental study on the temperature dependence of CO2 explosive evaporation. Process Saf Environ Prot 89:482–491

    Article  Google Scholar 

  • Witlox HWM, Stene J, Harper M, Nilsen (2011) Modelling of discharge and atmospheric dispersion for carbon dioxide releases including sensitivity analysis for wide range scenarios. Energy Procedia 4:2253–2260

    Article  Google Scholar 

  • Zhang Y, Schork J, Ludwig K (2013) Revisiting the conditions for a CO2 tank explosion. In: 9th global congress of process safety

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Rusin .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Rusin, A., Stolecka, K. (2015). Analysis of Risk Related to Carbon Dioxide Pipeline Transport. In: Advances in Carbon Dioxide Compression and Pipeline Transportation Processes. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18404-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18404-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18403-6

  • Online ISBN: 978-3-319-18404-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics