Skip to main content

Compression and Pumping Technology Options

  • Chapter
  • First Online:
  • 757 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The aim of this chapter is to analyse various CO2 compression processes for post-combustion CO2 capture applications for a high-power, 900 MW (Łukowicz H, Mroncz M (2012) Basic technological concepts of a “Capture Ready” power plant. Energy fuels. ACS Publications, pp 6475–6481), pulverized coal-fired power plant. Different thermodynamically feasible CO2 compression systems will be identified and their energy consumption will be quantified. The detailed thermodynamic analysis presented below examines methods of minimizing the producer’s power penalty using integrated, low-power compression conceptions. The goal of the present research is to reduce the penalty through an analysis of different compression conceptions and to investigate the possibility of capturing compression heat and converting it to useful energy for use elsewhere in the plant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aartun I (2002) Carbon dioxide, CO2, Pressure-Enthalpy diagram. Based on the program allprops, NTNU. Center for Applied Thermodynamic Studies, University of Idaho

    Google Scholar 

  • Angus S, Armstrong B, Reuck KM (1976) International thermodynamic tables of the fluid state. Volume 3 carbon dioxide. International Union of Pure and Applied Chemistry (IUPAC), Pergamon Press, Oxford

    Google Scholar 

  • Aspen HYSYS (2008) Version 7.0, User Guide

    Google Scholar 

  • Baldwin P, Wiliams J (2009) Capturing CO2: gas compression versus liquefaction. Power Magazine, 1 June 2009

    Google Scholar 

  • Botero C, Finkenrath M, Belloni C, Bertolo S, D’Ercole M, Gori E, Tacconelli R (2009) Thermoeconomic evaluation of CO2 compression strategies for post-combustion CO2 capture applications. In: Proceedings of ASME turbo expo 2009

    Google Scholar 

  • Bovon PR, Habel R (2007) Compression challangers. In: ASME turbo expo

    Google Scholar 

  • Colby GM, Griffin TR, Gupta MK, Miller HF, Nove SE, Sehlstedt NH (2012) High pressure compressor testing for Tupi 1, Tupi 2, and Tupi 3. In: Proceedings of ASME turbo expo 2012, Dresser Rand Company

    Google Scholar 

  • Edmister WC, Lee BI (1984) Applied hydrocarbon thermodynamics, vol 1, 2nd Edn. Gulf Publishing Company, Houston

    Google Scholar 

  • Gresh MT (1991) Compressor performance. Butterworth-Heinemann, Boston

    Google Scholar 

  • Habel R (2012) Advanced compression technology for CCS, EOR, refrigeration and vapour. Special section—CO2 compression. Carbon Capture Journal, Sept–Oct 2012

    Google Scholar 

  • Jockenhovel T et al (2009) Optimal power plant integration of post-combustion CO2 capture. In: Siemens, POWER-GEN Europe 2009

    Google Scholar 

  • Kidd HA, Miller HF (2010) Compression solutions for CO2 applications (Traditional Centrifugal and Supersonic Technology). Engineer’s Notebook, Olean, New York, USA

    Google Scholar 

  • Koopman AA, Bahr DA (2010) The Impact of CO2 compressor characteristics and integration in post-combustion carbon sequestration comparative economic analysis. In: Proceedings of ASME turbo expo 2010

    Google Scholar 

  • Lawlor S (2010) CO2 Compression using supersonic shock wave technology. Ramgen Power System

    Google Scholar 

  • Lupkes K (2012) Ramgen supersonic shock wave compression and engine technology. NETL CO2 Capture Technology Meeting, Pittsburgh, PA, July 11, 2012

    Google Scholar 

  • Lüdtke KH (2004) Process centrifugal compressors. Springer, Berlin

    Google Scholar 

  • Łukowicz H, Mroncz M (2012) Basic technological concepts of a “Capture Ready” power plant. Energy fuels. ACS Publications, pp 6475–6481

    Google Scholar 

  • Moore JJ, Nored MG (2008) Novel concepts for the compression of large volumes of carbon dioxide. In: Proceedings of ASME turbo expo 2008

    Google Scholar 

  • Moran MJ, Shapiro HN (1988) Fundamentals of engineering thermodynamics. Wiley, New York

    Google Scholar 

  • National Institute of Standards and Technology (NIST) Thermophysical properties of fluid systems, http://webbook.nist.gov/chemistry/fluid

  • Ramgen Power Systems (2009) Workshop on future large CO2 compression systems. Gaithersburg, 30–31 March 2009

    Google Scholar 

  • Schultz J (1962) The polytropic analysis of centrifugal compressors. J Eng Power 84:69–182

    Article  Google Scholar 

  • Singh D, Croiset E, Douglas PL, Douglas MA (2003) Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing versus O2/CO2 recycle combustion. Energy Convers Manage 44:3073–3091

    Article  Google Scholar 

  • Span R, Wagner W (1966) A new equation of state for carbon dioxide covering the fluid region from the triple point temperature to 1100 K at a pressure up to 800 MPa. J Phys Chem Ref Data 6:1509–1596

    Google Scholar 

  • STC-GV, STC-GVT Siemens Turbocompressor (2009) Integrally Geared, Vertically Split Volute Casing Siemens turbocompressors. Answers for energy

    Google Scholar 

  • VDI 2045 (1993) Acceptance and performance tests on turbocompressors and displacement compressors. Theory and examples. Düsseldorf

    Google Scholar 

  • Witkowski A, Majkut M (2012) The impact of CO2 compression systems on the compressor power required for pulverized coal-fired plant in post-combustion carbon dioxide sequestration. Archive Mech Eng LIX(3):344–360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Witkowski .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Witkowski, A., Majkut, M. (2015). Compression and Pumping Technology Options. In: Advances in Carbon Dioxide Compression and Pipeline Transportation Processes. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18404-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18404-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18403-6

  • Online ISBN: 978-3-319-18404-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics