Skip to main content

Observing the Dynamics of Supermassive Black Hole Binaries with Pulsar Timing Arrays

  • Chapter
Gravitational Wave Astrophysics with Pulsar Timing Arrays

Part of the book series: Springer Theses ((Springer Theses))

  • 715 Accesses

Abstract

This chapter is based on C.M.F. Mingarelli, K. Grover, R.J.E. Smith, T. Sidery, A. Vecchio, “Observing the dynamical evolution of a super massive black hole binary using Pulsar Timing Arrays”, Physical Review Letters, Volume 109, Issue 8 (2012), cited as Mingarelli et al. (2012). Minor modifications here have been made to the paper: Figs. 4.1 and 4.2 have been added to clarify the geometry and the importance of the precession effects respectively, and equations which were previously inline are now in standard form. These changes are meant to improve the readability of the text, and were not possible in the published version due to word restrictions form the Journal. Equations which were derived in the introduction are referenced and not repeated. I calculated the precession rate of the orbital angular momentum, the orbital evolution timescale and velocity of the binaries and wrote the draft of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • T.A. Apostolatos, C. Cutler, G.J. Sussman, K.S. Thorne, Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. Phys. Rev. D 49, 6274–6297 (1994). doi:10.1103/PhysRevD.49.6274

    Article  ADS  Google Scholar 

  • S. Babak, A. Sesana, Resolving multiple supermassive black hole binaries with pulsar timing arrays. Phys. Rev. D 85(4), 044034 (2012). doi:10.1103/PhysRevD.85.044034

  • E. Berti, M. Volonteri, Cosmological black hole spin evolution by mergers and accretion. Astrophys. J. 684, 822–828 (2008). doi:10.1086/590379

    Article  ADS  Google Scholar 

  • L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 9, 4 (2006). doi:10.12942/lrr-2006-4

  • L. Blanchet, A. Buonanno, G. Faye, Higher-order spin effects in the dynamics of compact binaries. II. Radiation field. Phys. Rev. D 74(10), 104034 (2006). doi:10.1103/PhysRevD.74.104034

  • A.T. Deller, J.P.W. Verbiest, S.J. Tingay, M. Bailes, Extremely high precision VLBI astrometry of PSR J0437-4715 and implications for theories of gravity. Astrophys. J. Lett. 685, L67–L70 (2008). doi:10.1086/592401

    Article  ADS  Google Scholar 

  • P.B. Demorest, R.D. Ferdman, M.E. Gonzalez, D. Nice, S. Ransom, I.H. Stairs, Z. Arzoumanian, A. Brazier, S. Burke-Spolaor, S.J. Chamberlin, J.M. Cordes, J. Ellis, L.S. Finn, P. Freire, S. Giampanis, F. Jenet, V.M. Kaspi, J. Lazio, A.N. Lommen, M. McLaughlin, N. Palliyaguru, D. Perrodin, R.M. Shannon, X. Siemens, D. Stinebring, J. Swiggum, W.W. Zhu, Limits on the stochastic gravitational wave background from the North American nanoHertz observatory for gravitational waves. Astrophys. J. 762, 94 (2013). doi:10.1088/0004-637X/762/2/94

    Google Scholar 

  • S. Detweiler, Pulsar timing measurements and the search for gravitational waves. Astrophys. J. 234, 1100–1104 (1979). doi:10.1086/157593

    Article  ADS  Google Scholar 

  • M. Dotti, M. Volonteri, A. Perego, M. Colpi, M. Ruszkowski, F. Haardt, Dual black holes in merger remnants - II. Spin evolution and gravitational recoil. Mon. Not. R. Astron. Soc. 402, 682–690 (2010). doi:10.1111/j.1365-2966.2009.15922.x

    Article  ADS  Google Scholar 

  • J.A. Ellis, F.A. Jenet, M.A. McLaughlin, Practical methods for continuous gravitational wave detection using pulsar timing data. Astrophys. J. 753, 96 (2012a). doi:10.1088/0004-637X/753/2/96

    Article  ADS  Google Scholar 

  • J.A. Ellis, X. Siemens, J.D.E. Creighton, Optimal strategies for continuous gravitational wave detection in pulsar timing arrays. Astrophys. J. 756, 175 (2012b). doi:10.1088/0004-637X/756/2/175

    Article  ADS  Google Scholar 

  • F.B. Estabrook, H.D. Wahlquist, Response of Doppler spacecraft tracking to gravitational radiation. Gen. Relativ. Gravit. 6, 439–447 (1975). doi:10.1007/BF00762449

    Article  ADS  Google Scholar 

  • R.D. Ferdman, R. van Haasteren, C.G. Bassa, M. Burgay, I. Cognard, A. Corongiu, N. D’Amico, G. Desvignes, J.W.T. Hessels, G.H. Janssen, A. Jessner, C. Jordan, R. Karuppusamy, E.F. Keane, M. Kramer, K. Lazaridis, Y. Levin, A.G. Lyne, M. Pilia, A. Possenti, M. Purver, B. Stappers, S. Sanidas, R. Smits, G. Theureau, The European pulsar timing array: current efforts and a LEAP toward the future. Classical Quantum Gravity 27(8), 084014 (2010). doi:10.1088/0264-9381/27/8/084014

    Google Scholar 

  • C.F. Gammie, S.L. Shapiro, J.C. McKinney, Black hole spin evolution. Astrophys. J. 602, 312–319 (2004). doi:10.1086/380996

    Article  ADS  Google Scholar 

  • R.W. Hellings, G.S. Downs, Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. Lett. 265, L39–L42 (1983). doi:10.1086/183954

    Article  ADS  Google Scholar 

  • G. Hobbs, A. Archibald, Z. Arzoumanian, D. Backer, M. Bailes, N.D.R. Bhat, M. Burgay, S. Burke-Spolaor, D. Champion, I. Cognard, W. Coles, J. Cordes, P. Demorest, G. Desvignes, R.D. Ferdman, L. Finn, P. Freire, M. Gonzalez, J. Hessels, A. Hotan, G. Janssen, F. Jenet, A. Jessner, C. Jordan, V. Kaspi, M. Kramer, V. Kondratiev, J. Lazio, K. Lazaridis, K.J. Lee, Y. Levin, A. Lommen, D. Lorimer, R. Lynch, A. Lyne, R. Manchester, M. McLaughlin, D. Nice, S. Oslowski, M. Pilia, A. Possenti, M. Purver, S. Ransom, J. Reynolds, S. Sanidas, J. Sarkissian, A. Sesana, R. Shannon, X. Siemens, I. Stairs, B. Stappers, D. Stinebring, G. Theureau, R. van Haasteren, W. van Straten, J.P.W. Verbiest, D.R.B. Yardley, X.P. You, The international pulsar timing array project: using pulsars as a gravitational wave detector. Classical Quantum Gravity 27(8), 084013 (2010). doi:10.1088/0264-9381/27/8/084013

    Google Scholar 

  • S.A. Hughes, R.D. Blandford, Black hole mass and spin coevolution by mergers. Astrophys. J. Lett. 585, L101–L104 (2003). doi:10.1086/375495

    Article  ADS  Google Scholar 

  • A.H. Jaffe, D.C. Backer, Gravitational waves probe the coalescence rate of massive black hole binaries. Astrophys. J. 583, 616–631 (2003). doi:10.1086/345443

    Article  ADS  Google Scholar 

  • F.A. Jenet, A. Lommen, S.L. Larson, L. Wen, Constraining the properties of supermassive black hole systems using pulsar timing: application to 3C 66B. Astrophys. J. 606, 799–803 (2004). doi:10.1086/383020

    Article  ADS  Google Scholar 

  • F.A. Jenet, G.B. Hobbs, W. van Straten, R.N. Manchester, M. Bailes, J.P.W. Verbiest, R.T. Edwards, A.W. Hotan, J.M. Sarkissian, S.M. Ord, Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: current limits and future prospects. Astrophys. J. 653, 1571–1576 (2006). doi:10.1086/508702

    Article  ADS  Google Scholar 

  • F. Jenet, L.S. Finn, J. Lazio, A. Lommen, M. McLaughlin, I. Stairs, D. Stinebring, J. Verbiest, A. Archibald, Z. Arzoumanian, D. Backer, J. Cordes, P. Demorest, R. Ferdman, P. Freire, M. Gonzalez, V. Kaspi, V. Kondratiev, D. Lorimer, R. Lynch, D. Nice, S. Ransom, R. Shannon, X. Siemens. The North American nanoHertz observatory for gravitational waves. ArXiv e-prints (2009). http://www8.nationalacademies.org/cp/projectview.aspx?key=49070

  • L.E. Kidder, Coalescing binary systems of compact objects to (post)5∕2-Newtonian order. V. Spin effects. Phys. Rev. D 52, 821–847 (1995). doi:10.1103/PhysRevD.52.821

    ADS  Google Scholar 

  • L.E. Kidder, C.M. Will, A.G. Wiseman, Spin effects in the inspiral of coalescing compact binaries. Phys. Rev. D 47, 4183 (1993). doi:10.1103/PhysRevD.47.R4183

    Article  ADS  Google Scholar 

  • S.M. Koushiappas, A.R. Zentner, Testing models of supermassive black hole seed formation through gravity waves. Astrophys. J. 639, 7–22 (2006). doi:10.1086/499325

    Article  ADS  Google Scholar 

  • K.J. Lee, N. Wex, M. Kramer, B.W. Stappers, C.G. Bassa, G.H. Janssen, R. Karuppusamy, R. Smits, Gravitational wave astronomy of single sources with a pulsar timing array. Mon. Not. R. Astron. Soc. 414, 3251–3264 (2011). doi:10.1111/j.1365-2966.2011.18622.x

    Article  ADS  Google Scholar 

  • K. Liu, J.P.W. Verbiest, M. Kramer, B.W. Stappers, W. van Straten, J.M. Cordes, Prospects for high-precision pulsar timing. Mon. Not. R. Astron. Soc. 417, 2916–2926 (2011). doi:10.1111/j.1365-2966.2011.19452.x

    Article  ADS  Google Scholar 

  • A.N. Lommen, D.C. Backer, Using pulsars to detect massive black hole binaries via gravitational radiation: sagittarius A* and nearby galaxies. Astrophys. J. 562, 297–302 (2001). doi:10.1086/323491

    Article  ADS  Google Scholar 

  • R.K. Malbon, C.M. Baugh, C.S. Frenk, C.G. Lacey, Black hole growth in hierarchical galaxy formation. Mon. Not. R. Astron. Soc. 382, 1394–1414 (2007). doi:10.1111/j.1365-2966.2007.12317.x

    Article  ADS  Google Scholar 

  • D. Merritt, R.D. Ekers, Tracing black hole mergers through radio lobe morphology. Science 297, 1310–1313 (2002). doi:10.1126/science.1074688

    Article  ADS  Google Scholar 

  • C.M.F. Mingarelli, K. Grover, T. Sidery, R.J.E. Smith, A. Vecchio, Observing the dynamics of supermassive black hole binaries with pulsar timing arrays. Phys. Rev. Lett. 109(8), 081104 (2012). doi:10.1103/PhysRevLett.109.081104. http://adsabs.harvard.edu/abs/2012PhRvL.109h1104M

  • C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman and Company, New York, 1973)

    Google Scholar 

  • A. Perego, M. Dotti, M. Colpi, M. Volonteri, Mass and spin co-evolution during the alignment of a black hole in a warped accretion disc. Mon. Not. R. Astron. Soc. 399, 2249–2263 (2009). doi:10.1111/j.1365-2966.2009.15427.x

    Article  ADS  Google Scholar 

  • D. Psaltis, Probes and tests of strong-field gravity with observations in the electromagnetic spectrum. Living Rev. Relativ. 11(9), 1–9 (2008). doi:10.12942/lrr-2008-9

  • M. Rajagopal, R.W. Romani, Ultra-low-frequency gravitational radiation from massive black hole binaries. Astrophys. J. 446, 543 (1995). doi:10.1086/175813

    Article  ADS  Google Scholar 

  • M.V. Sazhin, Opportunities for detecting ultralong gravitational waves. Sov. Astron. 22, 36–38 (1978)

    ADS  Google Scholar 

  • A. Sesana, A practical guide to the massive black hole cosmic history. Adv. Astron. 2012 (2012). doi:10.1155/2012/805402

    Google Scholar 

  • A. Sesana, A. Vecchio, Measuring the parameters of massive black hole binary systems with pulsar timing array observations of gravitational waves. Phys. Rev. D 81(10), 104008 (2010). doi:10.1103/PhysRevD.81.104008

  • A. Sesana, F. Haardt, P. Madau, M. Volonteri, Low-frequency gravitational radiation from coalescing massive black hole binaries in hierarchical cosmologies. Astrophys. J. 611, 623–632 (2004). doi:10.1086/422185

    Article  ADS  Google Scholar 

  • A. Sesana, A. Vecchio, C.N. Colacino, The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with pulsar timing arrays. Mon. Not. R. Astron. Soc. 390, 192–209 (2008). doi:10.1111/j.1365-2966.2008.13682.x

    Article  ADS  Google Scholar 

  • A. Sesana, A. Vecchio, M. Volonteri, Gravitational waves from resolvable massive black hole binary systems and observations with pulsar timing arrays. Mon. Not. R. Astron. Soc. 394, 2255–2265 (2009). doi:10.1111/j.1365-2966.2009.14499.x

    Article  ADS  Google Scholar 

  • A. Sesana, C. Roedig, M.T. Reynolds, M. Dotti, Multimessenger astronomy with pulsar timing and X-ray observations of massive black hole binaries. Mon. Not. R. Astron. Soc. 420, 860–877 (2012). doi:10.1111/j.1365-2966.2011.20097.x

    Article  ADS  Google Scholar 

  • SKA (2014), www.skatelescope.org

  • R. Smits, S.J. Tingay, N. Wex, M. Kramer, B. Stappers, Prospects for accurate distance measurements of pulsars with the square kilometre array: enabling fundamental physics. Astron. Astrophys. 528, A108 (2011). doi:10.1051/0004-6361/201016141

    Google Scholar 

  • I.H. Stairs, Testing general relativity with pulsar timing. Living Rev. Relativ. 6, 5 (2003). doi:10.12942/lrr-2003-5

  • T. Tanaka, K. Menou, Z. Haiman, Electromagnetic counterparts of supermassive black hole binaries resolved by pulsar timing arrays. Mon. Not. R. Astron. Soc. 420, 705–719 (2012). doi:10.1111/j.1365-2966.2011.20083.x

    Article  ADS  Google Scholar 

  • R. van Haasteren, Y. Levin, G.H. Janssen, K. Lazaridis, M. Kramer, B.W. Stappers, G. Desvignes, M.B. Purver, A.G. Lyne, R.D. Ferdman, A. Jessner, I. Cognard, G. Theureau, N. D’Amico, A. Possenti, M. Burgay, A. Corongiu, J.W.T. Hessels, R. Smits, J.P.W. Verbiest, Placing limits on the stochastic gravitational-wave background using European pulsar timing array data. Mon. Not. R. Astron. Soc. 414, 3117–3128 (2011). doi:10.1111/j.1365-2966.2011.18613.x

    Article  ADS  Google Scholar 

  • J.P.W. Verbiest, M. Bailes, W.A. Coles, G.B. Hobbs, W. van Straten, D.J. Champion, F.A. Jenet, R.N. Manchester, N.D.R. Bhat, J.M. Sarkissian, D. Yardley, S. Burke-Spolaor, A.W. Hotan, X.P. You, Timing stability of millisecond pulsars and prospects for gravitational-wave detection. Mon. Not. R. Astron. Soc. 400, 951–968 (2009). doi:10.1111/j.1365-2966.2009.15508.x.

    Article  ADS  Google Scholar 

  • J.P.W. Verbiest, M. Bailes, N.D.R. Bhat, S. Burke-Spolaor, D.J. Champion, W. Coles, G.B. Hobbs, A.W. Hotan, F. Jenet, J. Khoo, K.J. Lee, A. Lommen, R.N. Manchester, S. Oslowski, J. Reynolds, J. Sarkissian, W. van Straten, D.R.B. Yardley, X.P. You, Status update of the Parkes pulsar timing array. Classical Quantum Gravity 27(8), 084015 (2010). doi:10.1088/0264-9381/27/8/084015

    Google Scholar 

  • M. Volonteri, Formation of supermassive black holes. Astron. Astrophys. Rev. 18, 279–315 (2010). doi:10.1007/s00159-010-0029-x

    Article  ADS  Google Scholar 

  • M. Volonteri, P. Madau, F. Haardt, The formation of galaxy stellar cores by the hierarchical merging of supermassive black holes. Astrophys. J. 593, 661–666 (2003). doi:10.1086/376722

    Article  ADS  Google Scholar 

  • M. Volonteri, P. Madau, E. Quataert, M.J. Rees, The distribution and cosmic evolution of massive black hole spins. Astrophys. J. 620, 69–77 (2005). doi:10.1086/426858.

    Article  ADS  Google Scholar 

  • Z.L. Wen, F.A. Jenet, D. Yardley, G.B. Hobbs, R.N. Manchester, Constraining the coalescence rate of supermassive black-hole binaries using pulsar timing. Astrophys. J. 730, 29 (2011). doi:10.1088/0004-637X/730/1/29

    Article  ADS  Google Scholar 

  • C.M. Will, The confrontation between general relativity and experiment. Living Rev. Relativ. 9, 3 (2006). doi:10.12942/lrr-2006-3

  • J.S.B. Wyithe, A. Loeb, Low-frequency gravitational waves from massive black hole binaries: predictions for LISA and pulsar timing arrays. Astrophys. J. 590, 691–706 (2003). doi:10.1086/375187

    Article  ADS  Google Scholar 

  • D.R.B. Yardley, G.B. Hobbs, F.A. Jenet, J.P.W. Verbiest, Z.L. Wen, R.N. Manchester, W.A. Coles, W. van Straten, M. Bailes, N.D.R. Bhat, S. Burke-Spolaor, D.J. Champion, A.W. Hotan, J.M. Sarkissian, The sensitivity of the Parkes Pulsar timing array to individual sources of gravitational waves. Mon. Not. R. Astron. Soc. 407, 669–680 (2010). doi:10.1111/j.1365-2966.2010.16949.x

    Article  ADS  Google Scholar 

  • J. Yoo, J. Miralda-Escudé, D.H. Weinberg, Z. Zheng, C.W. Morgan, The most massive black holes in the universe: effects of mergers in massive galaxy clusters. Astrophys. J. 667, 813–825 (2007). doi:10.1086/521015

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mingarelli, C.M.F. (2016). Observing the Dynamics of Supermassive Black Hole Binaries with Pulsar Timing Arrays. In: Gravitational Wave Astrophysics with Pulsar Timing Arrays. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18401-2_4

Download citation

Publish with us

Policies and ethics