Skip to main content

Introduction

  • Chapter
  • 765 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Gravitational waves (GWs) are ripples of space-time travelling at the speed of light, originating from some of the most violent events in the Universe. In particular, they provide a new means of addressing open questions in astrophysics and fundamental physics and for studying black holes: from their formation, evolution and demographics, to the assembly history of galactic structures and the dynamical behaviour of gravitational fields in the strong non-linear regime. Specifically, GW observations through a network of radio pulsars used as ultra-stable clocks called a Pulsar Timing Array (PTA), cf. Estabrook and Wahlquist (1975), Sazhin (1978), and Detweiler (1979), currently represent the only direct observational avenue for the study of individual supermassive black hole binary (SMBHB) systems in the ∼ 108–109M mass range, with orbital periods between \(\sim \) 1 month and a few years. Moreover, the incoherent superposition of the cosmic population of SMBHBs is expected to form a diffusive GW background, which has yet to be detected, cf. Hellings and Downs (1983), Rajagopal and Romani (1995), Wyithe and Loeb (2003), Sesana et al. (2004), Jaffe and Backer (2003), Jenet et al. (2006), Sesana et al. (2008), van Haasteren et al. (2011), and Demorest et al. (2013).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This is called “trace-reversed since \(\bar{h}_{\mu }^{\mu } = -h\).

  2. 2.

    Now Dame (Susan) Jocelyn Bell Burnell, DBE, FRS, FRAS.

  3. 3.

    Note that the equivalent expression in Anholm et al. (2009), Eq. (9), has a sign error, as acknowledged by the authors, see the discussion of Eq. (29) in e.g. Book and Flanagan (2011).

  4. 4.

    Note that there is a sign typo in Anholm et al. (2009)’s appendix in the equation above C9 (it does not have a number). Equation (1.176) has the correct sign. This was first reported in Mingarelli et al. (2013).

Bibliography

  • P.A.R. Ade, R.W. Aikin, D. Barkats, S.J. Benton, C.A. Bischoff, J.J. Bock, J.A. Brevik, I. Buder, E. Bullock, C.D. Dowell, L. Duband, J.P. Filippini, S. Fliescher, S.R. Golwala, M. Halpern, M. Hasselfield, S.R. Hildebrandt, G.C. Hilton, V.V. Hristov, K.D. Irwin, K.S. Karkare, J.P. Kaufman, B.G. Keating, S.A. Kernasovskiy, J.M. Kovac, C.L. Kuo, E.M. Leitch, M. Lueker, P. Mason, C.B. Netterfield, H.T. Nguyen, R. O’Brient, R.W. Ogburn, A. Orlando, C. Pryke, C.D. Reintsema, S. Richter, R. Schwarz, C.D. Sheehy, Z.K. Staniszewski, R.V. Sudiwala, G.P. Teply, J.E. Tolan, A.D. Turner, A.G. Vieregg, C.L. Wong, K.W. Yoon, Bicep2 Collaboration, Detection of B-mode polarization at degree angular scales by BICEP2. Phys. Rev. Lett. 112(24), 241101 (2014). doi:10.1103/PhysRevLett.112. 241101

    Google Scholar 

  • B. Allen, J.D. Romano, Detecting a stochastic background of gravitational radiation: signal processing strategies and sensitivities. Phys. Rev. D 59(10), 102001 (1999). doi:10.1103/PhysRevD.59.102001

    Google Scholar 

  • M.A. Alvarez, J.H. Wise, T. Abel, Accretion onto the first stellar-mass black holes. Astrophys. J. Lett. 701, L133–L137 (2009). doi:10.1088/0004-637X/ 701/2/L133

    Article  ADS  Google Scholar 

  • M. Anholm, S. Ballmer, J.D.E. Creighton, L.R. Price, X. Siemens, Optimal strategies for gravitational wave stochastic background searches in pulsar timing data. Phys. Rev. D 79(8), 084030 (2009). doi:10.1103/PhysRevD. 79.084030

    Google Scholar 

  • K.G. Arun, S. Babak, E. Berti, N. Cornish, C. Cutler, J. Gair, S.A. Hughes, B.R. Iyer, R.N. Lang, I. Mandel, E.K. Porter, B.S. Sathyaprakash, S. Sinha, A.M. Sintes, M. Trias, C. Van Den Broeck, M. Volonteri, Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce. Classical Quantum Gravity 26(9), 094027 (2009). doi:10.1088/0264-9381/26/9/094027

    Google Scholar 

  • W. Baade, F. Zwicky, On super-novae. Proc. Natl. Acad. Sci. 20, 254–259 (1934a). doi:10.1073/pnas.20.5.254

    Article  ADS  Google Scholar 

  • W. Baade, F. Zwicky, Cosmic rays from super-novae. Proc. Natl. Acad. Sci. 20, 259–263 (1934b). doi:10.1073/pnas.20.5.259

    Article  ADS  Google Scholar 

  • S. Babak, A. Sesana, Resolving multiple supermassive black hole binaries with pulsar timing arrays. Phys. Rev. D 85(4), 044034 (2012). doi:10.1103/ PhysRevD.85.044034

    Google Scholar 

  • D.C. Backer, S.R. Kulkarni, C. Heiles, M.M. Davis, W.M. Goss, A millisecond pulsar. Nature 300, 615–618 (1982). doi:10.1038/300615a0

    Article  ADS  Google Scholar 

  • S.V.W. Beckwith, M. Stiavelli, A.M. Koekemoer, J.A.R. Caldwell, H.C. Ferguson, R. Hook, R.A. Lucas, L.E. Bergeron, M. Corbin, S. Jogee, N. Panagia, M. Robberto, P. Royle, R.S. Somerville, M. Sosey, The hubble ultra deep field. Astron. J. 132, 1729–1755 (2006). doi:10.1086/ 507302

    Article  ADS  Google Scholar 

  • BICEP2/Keck and Planck Collaborations, P.A.R. Ade, N. Aghanim, Z. Ahmed, R.W. Aikin et al., Joint analysis of BICEP2/Keck array and Planck data. Phys. Rev. Lett. 114(10), 101301 (2015). doi:10.1103/ PhysRevLett.114.101301

    Google Scholar 

  • L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17, 2 (2014). doi:10. 12942/lrr-2014-2

    Google Scholar 

  • L. Blanchet, T. Damour, B.R. Iyer, C.M. Will, A.G. Wiseman, Gravitational-radiation damping of compact binary systems to second post-Newtonian order. Phys. Rev. Lett. 74, 3515–3518 (1995). doi:10.1103/PhysRevLett.74.3515

    Article  ADS  Google Scholar 

  • C. Bona, J. Massó, E. Seidel, J. Stela, New formalism for numerical relativity. Phys. Rev. Lett. 75, 600–603 (1995). doi:10.1103/PhysRevLett. 75.600

    Article  ADS  Google Scholar 

  • L.G. Book, É.É. Flanagan, Astrometric effects of a stochastic gravitational wave background. Phys. Rev. D 83(2), 024024 (2011). doi:10.1103/ PhysRevD.83.024024

    Google Scholar 

  • A. Buonanno, B.R. Iyer, E. Ochsner, Y. Pan, B.S. Sathyaprakash, Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors. Phys. Rev. D 80(8), 084043 (2009). doi:10.1103/PhysRevD.80.084043

    Google Scholar 

  • M. Burgay, N. D’Amico, A. Possenti, R.N. Manchester, A.G. Lyne, B.C. Joshi, M.A. McLaughlin, M. Kramer, J.M. Sarkissian, F. Camilo, V. Kalogera, C. Kim, D.R. Lorimer, An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 426, 531–533 (2003). doi:10.1038/nature02124

    Article  ADS  Google Scholar 

  • J. Centrella, J.G. Baker, B.J. Kelly, J.R. van Meter, Black-hole binaries, gravitational waves, and numerical relativity. Rev. Mod. Phys. 82, 3069–3119 (2010). doi:10.1103/RevModPhys.82.3069

    Article  MATH  ADS  Google Scholar 

  • J. Chadwick, Possible existence of a neutron. Nature 129, 312 (1932). doi:10.1038/129312a0

    Article  ADS  Google Scholar 

  • C.J. Conselice, M.A. Bershady, M. Dickinson, C. Papovich, A direct measurement of major galaxy mergers at z < 3. Astron. J. 126, 1183–1207 (2003). doi:10.1086/377318

    Article  ADS  Google Scholar 

  • C. Cutler, É.E. Flanagan, Gravitational waves from merging compact binaries: how accurately can one extract the binary’s parameters from the inspiral waveform? Phys. Rev. D 49, 2658–2697 (1994). doi:10.1103/ PhysRevD.49.2658

    Article  ADS  Google Scholar 

  • T. Damour, B.R. Iyer, A. Nagar, Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries. Phys. Rev. D 79 (6), 064004 (2009). doi:10.1103/PhysRevD.79.064004

    Google Scholar 

  • P. Demorest, J. Lazio, A. Lommen, A. Archibald, Z. Arzoumanian, D. Backer, J. Cordes, P. Demorest, R. Ferdman, P. Freire, M. Gonzalez, R. Jenet, V. Kaspi, V. Kondratiev, J. Lazio, A. Lommen, D. Lorimer, R. Lynch, M. McLaughlin, D. Nice, S. Ransom, R. Shannon, X. Siemens, I. Stairs, D. Stinebring, D. Reitze, D. Shoemaker, S. Whitcomb, R. Weiss, Gravitational wave astronomy using pulsars: massive black hole mergers and the early universe, in astro2010: The Astronomy and Astrophysics Decadal Survey. Astronomy, vol. 2010, p. 64 (2009). http://sites.nationalacademies.org/BPA/BPA_050603

  • P.B. Demorest, R.D. Ferdman, M.E. Gonzalez, D. Nice, S. Ransom, I.H. Stairs, Z. Arzoumanian, A. Brazier, S. Burke-Spolaor, S.J. Chamberlin, J.M. Cordes, J. Ellis, L.S. Finn, P. Freire, S. Giampanis, F. Jenet, V.M. Kaspi, J. Lazio, A.N. Lommen, M. McLaughlin, N. Palliyaguru, D. Perrodin, R.M. Shannon, X. Siemens, D. Stinebring, J. Swiggum, W.W. Zhu, Limits on the stochastic gravitational wave background from the North American Nanohertz observatory for gravitational waves. Astrophys. J. 762, 94 (2013). doi:10.1088/0004-637X/762/2/94.

    Google Scholar 

  • S. Detweiler, Pulsar timing measurements and the search for gravitational waves. Astrophys. J. 234, 1100–1104 (1979). doi:10.1086/157593

    Article  ADS  Google Scholar 

  • S.G. Djorgovski, M. Volonteri, V. Springel, V. Bromm, G. Meylan, The origins and the early evolution of quasars and supermassive black holes, in The Eleventh Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, ed. by H. Kleinert, R.T. Jantzen, R. Ruffini. Gravitation and Relativistic Field Theories (World Scientific Publishing, Singapore, 2008), pp. 340–367. doi:10.1142/ 9789812834300_0018

    Google Scholar 

  • J.A. Ellis, F.A. Jenet, M.A. McLaughlin, Practical methods for continuous gravitational wave detection using pulsar timing data. Astrophys. J. 753, 96 (2012a). doi:10.1088/0004-637X/753/2/96

    Article  ADS  Google Scholar 

  • J.A. Ellis, X. Siemens, J.D.E. Creighton, Optimal strategies for continuous gravitational wave detection in pulsar timing arrays. Astrophys. J. 756, 175 (2012b). doi:10.1088/0004-637X/756/2/175

    Article  ADS  Google Scholar 

  • F.B. Estabrook, H.D. Wahlquist, Response of Doppler spacecraft tracking to gravitational radiation. Gen. Relativ. Gravit. 6, 439–447 (1975). doi:10. 1007/BF00762449

    Google Scholar 

  • R.D. Ferdman, R. van Haasteren, C.G. Bassa, M. Burgay, I. Cognard, A. Corongiu, N. D’Amico, G. Desvignes, J.W.T. Hessels, G.H. Janssen, A. Jessner, C. Jordan, R. Karuppusamy, E.F. Keane, M. Kramer, K. Lazaridis, Y. Levin, A.G. Lyne, M. Pilia, A. Possenti, M. Purver, B. Stappers, S. Sanidas, R. Smits, G. Theureau, The European pulsar timing array: current efforts and a LEAP toward the future. Classical Quantum Gravity 27(8), 084014 (2010). doi:10.1088/0264-9381/27/8/ 084014

    Google Scholar 

  • L. Ferrarese, H. Ford, Supermassive black holes in galactic nuclei: past, present and future research. Space Sci. Rev. 116, 523–624 (2005). doi:10. 1007/s11214-005-3947-6

    Google Scholar 

  • L.S. Finn, S.L. Larson, J.D. Romano, Detecting a stochastic gravitational-wave background: the overlap reduction function. Phys. Rev. D 79(6), 062003 (2009). doi:10.1103/PhysRevD.79.062003

    Google Scholar 

  • É.É. Flanagan, S.A. Hughes, The basics of gravitational wave theory. New J. Phys. 7, 204 (2005). doi:10.1088/1367-2630/7/1/204

    Article  MathSciNet  ADS  Google Scholar 

  • R. Genzel, F. Eisenhauer, S. Gillessen, The galactic center massive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121–3195 (2010). doi:10.1103/RevModPhys.82.3121

    Article  ADS  Google Scholar 

  • A.M. Ghez, S. Salim, S.D. Hornstein, A. Tanner, J.R. Lu, M. Morris, E.E. Becklin, G. Duchêne, Stellar orbits around the galactic center black hole. Astrophys. J. 620, 744–757 (2005). doi:10.1086/427175

    Article  ADS  Google Scholar 

  • L.P. Grishchuk, Amplification of gravitational waves in an isotropic universe. Sov. J. Exp. Theor. Phys. 40, 409 (1975)

    ADS  Google Scholar 

  • A.H. Guth, Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981) doi:10.1103/ PhysRevD.23.347

    Article  ADS  Google Scholar 

  • M.G. Haehnelt, M.J. Rees, The formation of nuclei in newly formed galaxies and the evolution of the quasar population. Mon. Not. R. Astron. Soc. 263, 168–178 (1993)

    Article  ADS  Google Scholar 

  • D. Hanson, S. Hoover, A. Crites, P.A.R. Ade, K.A. Aird, J.E. Austermann, J.A. Beall, A.N. Bender, B.A. Benson, L.E. Bleem, J.J. Bock, J.E. Carlstrom, C.L. Chang, H.C. Chiang, H.-M. Cho, A. Conley, T.M. Crawford, T. de Haan, M.A. Dobbs, W. Everett, J. Gallicchio, J. Gao, E.M. George, N.W. Halverson, N. Harrington, J.W. Henning, G.C. Hilton, G.P. Holder, W.L. Holzapfel, J.D. Hrubes, N. Huang, J. Hubmayr, K.D. Irwin, R. Keisler, L. Knox, A.T. Lee, E. Leitch, D. Li, C. Liang, D. Luong-Van, G. Marsden, J.J. McMahon, J. Mehl, S.S. Meyer, L. Mocanu, T.E. Montroy, T. Natoli, J.P. Nibarger, V. Novosad, S. Padin, C. Pryke, C.L. Reichardt, J.E. Ruhl, B.R. Saliwanchik, J.T. Sayre, K.K. Schaffer, B. Schulz, G. Smecher, A.A. Stark, K.T. Story, C. Tucker, K. Vanderlinde, J.D. Vieira, M.P. Viero, G. Wang, V. Yefremenko, O. Zahn, M. Zemcov, Detection of B-mode polarization in the cosmic microwave background with data from the south pole telescope. Phys. Rev. Lett. 111(14), 141301 (2013). doi:10.1103/ PhysRevLett.111.141301

    Google Scholar 

  • S.W. Hawking, W. Israel, 300 Years of Gravitation (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  • R.W. Hellings, G.S. Downs, Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys. J. Lett. 265, L39–L42 (1983). doi:10.1086/183954

    Article  ADS  Google Scholar 

  • A. Hewish, S.J. Bell, J.D.H. Pilkington, P.F. Scott, R.A. Collins, Observation of a rapidly pulsating radio source. Nature 217, 709–713 (1968). doi:10. 1038/217709a0

    Google Scholar 

  • G. Hobbs, A. Archibald, Z. Arzoumanian, D. Backer, M. Bailes, N.D.R. Bhat, M. Burgay, S. Burke-Spolaor, D. Champion, I. Cognard, W. Coles, J. Cordes, P. Demorest, G. Desvignes, R.D. Ferdman, L. Finn, P. Freire, M. Gonzalez, J. Hessels, A. Hotan, G. Janssen, F. Jenet, A. Jessner, C. Jordan, V. Kaspi, M. Kramer, V. Kondratiev, J. Lazio, K. Lazaridis, K.J. Lee, Y. Levin, A. Lommen, D. Lorimer, R. Lynch, A. Lyne, R. Manchester, M. McLaughlin, D. Nice, S. Oslowski, M. Pilia, A. Possenti, M. Purver, S. Ransom, J. Reynolds, S. Sanidas, J. Sarkissian, A. Sesana, R. Shannon, X. Siemens, I. Stairs, B. Stappers, D. Stinebring, G. Theureau, R. van Haasteren, W. van Straten, J.P.W. Verbiest, D.R.B. Yardley, X.P. You, The international pulsar timing array project: using pulsars as a gravitational wave detector. Classical Quantum Gravity 27(8), 084013 (2010). doi:10.1088/0264-9381/ 27/8/084013

    Google Scholar 

  • R.A. Hulse, J.H. Taylor, Discovery of a pulsar in a binary system. Astrophys. J. Lett. 195, L51–L53 (1975). doi:10.1086/181708

    Article  ADS  Google Scholar 

  • A.H. Jaffe, D.C. Backer, Gravitational waves probe the coalescence rate of massive black hole binaries. Astrophys. J. 583, 616–631 (2003). doi:10. 1086/345443

    Google Scholar 

  • F.A. Jenet, A. Lommen, S.L. Larson, L. Wen, Constraining the properties of supermassive black hole systems using pulsar timing: application to 3C 66B. Astrophys. J. 606, 799–803 (2004). doi:10.1086/383020

    Article  ADS  Google Scholar 

  • F.A. Jenet, G.B. Hobbs, W. van Straten, R.N. Manchester, M. Bailes, J.P.W. Verbiest, R.T. Edwards, A.W. Hotan, J.M. Sarkissian, S.M. Ord, Upper bounds on the low-frequency stochastic gravitational wave background from pulsar timing observations: current limits and future prospects. Astrophys. J. 653, 1571–1576 (2006). doi:10.1086/508702

    Article  ADS  Google Scholar 

  • F. Jenet, L.S. Finn, J. Lazio, A. Lommen, M. McLaughlin, I. Stairs, D. Stinebring, J. Verbiest, A. Archibald, Z. Arzoumanian, D. Backer, J. Cordes, P. Demorest, R. Ferdman, P. Freire, M. Gonzalez, V. Kaspi, V. Kondratiev, D. Lorimer, R. Lynch, D. Nice, S. Ransom, R. Shannon, X. Siemens, The North American Nanohertz observatory for gravitational waves (2009). ArXiv e-prints

    Google Scholar 

  • M. Kidger, L. Takalo, A. Sillanpaa, A new analysis of the 11-year period in OJ287—confirmation of its existence. Astron. Astrophys. 264, 32–36 (1992)

    ADS  Google Scholar 

  • A. King, Black holes, galaxy formation, and the M BH -\(\sigma\) relation. Astrophys. J. Lett. 596, L27–L29 (2003). doi:10.1086/379143

    Article  ADS  Google Scholar 

  • M. Kramer, N. Wex, Topical review: the double pulsar system: a unique laboratory for gravity. Classical Quantum Gravity 26(7), 073001 (2009). doi:10.1088/0264-9381/26/7/073001

    Google Scholar 

  • M. Kramer, I.H. Stairs, R.N. Manchester, M.A. McLaughlin, A.G. Lyne, R.D. Ferdman, M. Burgay, D.R. Lorimer, A. Possenti, N. D’Amico, J.M. Sarkissian, G.B. Hobbs, J.E. Reynolds, P.C.C. Freire, F. Camilo, Tests of general relativity from timing the double pulsar. Science 314, 97–102 (2006). doi:10.1126/science.1132305

    Article  ADS  Google Scholar 

  • S. Larson, J.T. Wheeler, Gravitational Waves (2013). From online notes, http://www.physics.usu.edu/Wheeler/GenRel2013/Notes/GravitationalWaves.pdf

  • K.J. Lee, N. Wex, M. Kramer, B.W. Stappers, C.G. Bassa, G.H. Janssen, R. Karuppusamy, R. Smits, Gravitational wave astronomy of single sources with a pulsar timing array. Mon. Not. R. Astron. Soc. 414, 3251–3264 (2011). doi:10.1111/j.1365-2966.2011.18622.x

    Article  ADS  Google Scholar 

  • A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389–393 (1982). doi:10.1016/0370-2693(82) 91219-9

    Article  MathSciNet  ADS  Google Scholar 

  • K. Liu, J.P.W. Verbiest, M. Kramer, B.W. Stappers, W. van Straten, J.M. Cordes, Prospects for high-precision pulsar timing. Mon. Not. R. Astron. Soc. 417, 2916–2926 (2011). doi:10.1111/j.1365-2966.2011.19452.x

    Article  ADS  Google Scholar 

  • D.R. Lorimer, Binary and millisecond pulsars. Living Rev. Relativ. 11, 8 (2008). doi:10.12942/lrr-2008-8

    Google Scholar 

  • D.R. Lorimer, M. Kramer, Handbook of Pulsar Astronomy (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  • A.G. Lyne, M. Burgay, M. Kramer, A. Possenti, R.N. Manchester, F. Camilo, M.A. McLaughlin, D.R. Lorimer, N. D’Amico, B.C. Joshi, J. Reynolds, P.C.C. Freire, A double-pulsar system: a rare laboratory for relativistic gravity and plasma physics. Science 303, 1153–1157 (2004). doi:10.1126/science.1094645

    Article  ADS  Google Scholar 

  • M. Maggiore, Gravitational wave experiments and early universe cosmology. Phys. Rep. 331, 283–367 (2000). doi:10.1016/S0370-1573(99)00102-7

    Article  ADS  Google Scholar 

  • M. Maggiore, Gravitational Waves: Theory and Experiments. Gravitational Waves, vol. 1 (Oxford University Press, Oxford, 2007). ISBN 9780198570745. http://books.google.co.uk/books?id=AqVpQgAACAAJ

  • J. Magorrian, S. Tremaine, D. Richstone, R. Bender, G. Bower, A. Dressler, S.M. Faber, K. Gebhardt, R. Green, C. Grillmair, J. Kormendy, T. Lauer, The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998). doi:10.1086/ 300353

    Article  ADS  Google Scholar 

  • C.M.F. Mingarelli, T. Sidery, Effect of small interpulsar distances in stochastic gravitational wave background searches with pulsar timing arrays. Phys. Rev. D 90(6), 062011 (2014). doi: 10.1103/PhysRevD.90.062011. http://adsabs.harvard.edu/abs/2014PhRvD..90f2011M

  • C.M.F. Mingarelli, T. Sidery, I. Mandel, A. Vecchio, Characterizing gravitational wave stochastic background anisotropy with pulsar timing arrays. Phys. Rev. D 88(6), 062005 (2013). doi:10.1103/PhysRevD.88. 062005

    Google Scholar 

  • C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman and Company, New York, 1973)

    Google Scholar 

  • Nobelprize.org., The nobel prize in physics 1974 (1974), http://www.nobelprize.org/nobel_prizes/physics/laureates/1974/. The Nobel Prize in Physics 1974 was awarded jointly to Sir Martin Ryle and Antony Hewish “for their pioneering research in radio astrophysics: Ryle for his observations and inventions, in particular of the aperture synthesis technique, and Hewish for his decisive role in the discovery of pulsars”

  • Nobelprize.org., The nobel prize in physics 1993 (1993), http://www.nobelprize.org/nobel_prizes/physics/laureates/1993/. The Nobel Prize in Physics 1993 was awarded jointly to Russell A. Hulse and Joseph H. Taylor Jr. “for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation”

  • NRAO, Pulsar timing (2014), http://www.cv.nrao.edu/course/astr534/PulsarTiming.html

  • J.R. Oppenheimer, G.M. Volkoff, On massive neutron cores. Phys. Rev. 55, 374–381 (1939). doi:10.1103/PhysRev.55.374

    Article  MATH  ADS  Google Scholar 

  • P.J.E. Peebles, Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations. Astrophys. J. Lett. 263, L1–L5 (1982). doi:10.1086/183911

    Article  ADS  Google Scholar 

  • D. Perrodin, F. Jenet, A. Lommen, L. Finn, P. Demorest, R. Ferdman, M. Gonzalez, D. Nice, S. Ransom, I. Stairs, Timing noise analysis of NANOGrav pulsars (2013). ArXiv e-prints

    Google Scholar 

  • E.S. Phinney, A practical theorem on gravitational wave backgrounds. Astrophysics (2001). ArXiv e-prints

    Google Scholar 

  • Planck Collaboration, P.A.R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A.J. Banday et al., Planck 2013 results. XXII. Constraints on inflation (2013). ArXiv e-prints

    Google Scholar 

  • Planck Collaboration, P.A.R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud et al., Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014). doi:10.1051/0004-6361/201321591

    Google Scholar 

  • E. Poisson, C.M. Will, Gravitational waves from inspiraling compact binaries: parameter estimation using second-post-Newtonian waveforms. Phys. Rev. D 52, 848–855 (1995). doi:10.1103/PhysRevD.52.848

    Article  ADS  Google Scholar 

  • F. Pretorius, Evolution of binary black-hole spacetimes. Phys. Rev. Lett. 95 (12), 121101 (2005). doi:10.1103/PhysRevLett.95.121101

    Google Scholar 

  • M. Rajagopal, R.W. Romani, Ultra–low-frequency gravitational radiation from massive black hole binaries. Astrophys. J. 446, 543 (1995). doi:10. 1086/175813

    Google Scholar 

  • J.A. Regan, M.G. Haehnelt, Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures greater than 10000 K. Mon. Not. R. Astron. Soc. 396, 343–353 (2009). doi:10.1111/j.1365-2966.2009.14579.x

    Article  ADS  Google Scholar 

  • C. Roedig, J.H. Krolik, M.C. Miller, Observational signatures of binary supermassive black holes. Astrophys. J. 785, 115 (2014). doi:10.1088/ 0004-637X/785/2/115

    Article  ADS  Google Scholar 

  • S.A. Sanidas, R.A. Battye, B.W. Stappers, Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European pulsar timing array. Phys. Rev. D 85(12), 122003 (2012). doi:10.1103/PhysRevD.85.122003

    Google Scholar 

  • M.V. Sazhin, Opportunities for detecting ultralong gravitational waves. Sov. Astron. 22, 36–38 (1978)

    ADS  Google Scholar 

  • B.F. Schutz, F. Ricci, Gravitational waves, sources, and detectors (1999). ArXiv e-prints. 82 pages, 9 figures, lecture notes from 1999, not posted to ArXiV at the time because they exceeded the article/figure size limits; Schutz, B. F.; Ricci, F.: Gravitational Waves, Sources and Detectors. In: Gravitational Waves, Ciufolini, I., et al. eds. (Institute of Physics, Bristol, 2001)

    Google Scholar 

  • A. Sesana, A. Vecchio, Measuring the parameters of massive black hole binary systems with pulsar timing array observations of gravitational waves. Phys. Rev. D 81(10), 104008 (2010). doi:10.1103/PhysRevD.81. 104008

    Google Scholar 

  • A. Sesana, F. Haardt, P. Madau, M. Volonteri, Low-frequency gravitational radiation from coalescing massive black hole binaries in hierarchical cosmologies. Astrophys. J. 611, 623–632 (2004). doi:10.1086/422185

    Article  ADS  Google Scholar 

  • A. Sesana, M. Volonteri, F. Haardt, The imprint of massive black hole formation models on the LISA data stream. Mon. Not. R. Astron. Soc. 377, 1711–1716 (2007). doi:10.1111/j.1365-2966.2007.11734.x

    Article  ADS  Google Scholar 

  • A. Sesana, A. Vecchio, C.N. Colacino, The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with pulsar timing arrays. Mon. Not. R. Astron. Soc. 390, 192–209 (2008). doi:10.1111/j.1365-2966.2008.13682.x

    Article  ADS  Google Scholar 

  • A. Sesana, A. Vecchio, M. Volonteri, Gravitational waves from resolvable massive black hole binary systems and observations with pulsar timing arrays. Mon. Not. R. Astron. Soc. 394, 2255–2265 (2009). doi:10.1111/j. 1365-2966.2009.14499.x

    Google Scholar 

  • C. Shang, G.L. Bryan, Z. Haiman, Supermassive black hole formation by direct collapse: keeping protogalactic gas H2 free in dark matter haloes with virial temperatures T vir  > ≈ 104 K. Mon. Not. R. Astron. Soc. 402, 1249–1262 (2010). doi:10.1111/j. 1365-2966.2009.15960.x

    Google Scholar 

  • R.M. Shannon, V. Ravi, W.A. Coles, G. Hobbs, M.J. Keith, R.N. Manchester, J.S.B. Wyithe, M. Bailes, N.D.R. Bhat, S. Burke-Spolaor, J. Khoo, Y. Levin, S. Oslowski, J.M. Sarkissian, W. van Straten, J.P.W. Verbiest, J.-B. Want, Gravitational-wave limits from pulsar timing constrain supermassive black hole evolution. Science 342, 334–337 (2013)

    Article  ADS  Google Scholar 

  • S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983)

    Book  Google Scholar 

  • A. Sillanpaa, S. Haarala, M.J. Valtonen, B. Sundelius, G.G. Byrd, OJ 287 - Binary pair of supermassive black holes. Astrophys. J. 325, 628–634 (1988). doi:10.1086/166033

    Article  ADS  Google Scholar 

  • SKA (2014), www.skatelescope.org

  • H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein’s Field Equations, 2nd edn. (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  • J.H. Taylor, J.M. Weisberg, A new test of general relativity—gravitational radiation and the binary pulsar PSR 1913+16. Astrophys. J. 253, 908–920 (1982). doi:10.1086/159690

    Article  ADS  Google Scholar 

  • M.J. Valtonen, H.J. Lehto, K. Nilsson, J. Heidt, L.O. Takalo, A. Sillanpää, C. Villforth, M. Kidger, G. Poyner, T. Pursimo, S. Zola, J.-H. Wu, X. Zhou, K. Sadakane, M. Drozdz, D. Koziel, D. Marchev, W. Ogloza, C. Porowski, M. Siwak, G. Stachowski, M. Winiarski, V.-P. Hentunen, M. Nissinen, A. Liakos, S. Dogru, A massive binary black-hole system in OJ287 and a test of general relativity. Nature 452, 851–853 (2008). doi:10.1038/nature06896

    Article  ADS  Google Scholar 

  • M.J. Valtonen, S. Ciprini, H.J. Lehto, On the masses of OJ287 black holes. Mon. Not. R. Astron. Soc. 427, 77–83 (2012). doi:10.1111/j.1365-2966. 2012.21861.x

    Article  ADS  Google Scholar 

  • R. van Haasteren, Y. Levin, P. McDonald, T. Lu, On measuring the gravitational-wave background using pulsar timing arrays. Mon. Not. R. Astron. Soc. 395, 1005–1014 (2009). doi:10.1111/j.1365-2966.2009.14590.x

    Article  ADS  Google Scholar 

  • R. van Haasteren, Y. Levin, G.H. Janssen, K. Lazaridis, M. Kramer, B.W. Stappers, G. Desvignes, M.B. Purver, A.G. Lyne, R.D. Ferdman, A. Jessner, I. Cognard, G. Theureau, N. D’Amico, A. Possenti, M. Burgay, A. Corongiu, J.W.T. Hessels, R. Smits, J.P.W. Verbiest, Placing limits on the stochastic gravitational-wave background using European pulsar timing array data. Mon. Not. R. Astron. Soc. 414, 3117–3128 (2011). doi:10.1111/j.1365-2966.2011.18613.x

    Article  ADS  Google Scholar 

  • J.P.W. Verbiest, M. Bailes, W. van Straten, G.B. Hobbs, R.T. Edwards, R.N. Manchester, N.D.R. Bhat, J.M. Sarkissian, B.A. Jacoby, S.R. Kulkarni, Precision timing of PSR J0437-4715: an accurate pulsar distance, a high pulsar mass, and a limit on the variation of Newton’s gravitational constant. Astrophys. J. 679, 675–680 (2008). doi:10.1086/529576

    Article  ADS  Google Scholar 

  • J.P.W. Verbiest, M. Bailes, W.A. Coles, G.B. Hobbs, W. van Straten, D.J. Champion, F.A. Jenet, R.N. Manchester, N.D.R. Bhat, J.M. Sarkissian, D. Yardley, S. Burke-Spolaor, A.W. Hotan, X.P. You, Timing stability of millisecond pulsars and prospects for gravitational-wave detection. Mon. Not. R. Astron. Soc. 400, 951–968 (2009). doi:10.1111/j.1365-2966.2009. 15508.x

    Article  ADS  Google Scholar 

  • J.P.W. Verbiest, M. Bailes, N.D.R. Bhat, S. Burke-Spolaor, D.J. Champion, W. Coles, G.B. Hobbs, A.W. Hotan, F. Jenet, J. Khoo, K.J. Lee, A. Lommen, R.N. Manchester, S. Oslowski, J. Reynolds, J. Sarkissian, W. van Straten, D.R.B. Yardley, X.P. You, Status update of the Parkes pulsar timing array. Classical Quantum Gravity 27(8), 084015 (2010). doi:10.1088/0264-9381/27/8/084015

    Google Scholar 

  • M. Volonteri, Formation of supermassive black holes. Astron. Astrophys. Rev. 18, 279–315 (2010). doi:10.1007/s00159-010-0029-x

    Article  ADS  Google Scholar 

  • M. Volonteri, The formation and evolution of massive black holes. Science 337, 544–547 (2012). doi:10.1126/science.1220843

    Article  ADS  Google Scholar 

  • J.M. Weisberg, J.H. Taylor, The relativistic binary pulsar B1913+16: thirty years of observations and analysis, in Binary Radio Pulsars, ed. by F.A. Rasio, I.H. Stairs. Astronomical Society of the Pacific Conference Series, vol. 328 (Astronomical Society of the Pacific, San Francisco, 2005), p. 25

    Google Scholar 

  • Z.L. Wen, F.A. Jenet, D. Yardley, G.B. Hobbs, R.N. Manchester, Constraining the coalescence rate of supermassive black-hole binaries using pulsar timing. Astrophys. J. 730, 29 (2011). doi:10.1088/0004-637X/730/ 1/29

    Article  ADS  Google Scholar 

  • D.J. Whalen, C.L. Fryer, The formation of supermassive black holes from Low-mass Pop III seeds. Astrophys. J. Lett. 756, L19 (2012). doi:10.1088/ 2041-8205/756/1/L19

    Article  ADS  Google Scholar 

  • J.T. Wheeler, Gravitational waves (2013), From online notes, http://www.physics.usu.edu/Wheeler/GenRel2013/Notes/GravitationalWaves.pdf

  • S.D.M. White, M.J. Rees, Core condensation in heavy halos—a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978)

    Article  ADS  Google Scholar 

  • J.H. Wise, M.J. Turk, T. Abel, Resolving the formation of Protogalaxies. II. Central gravitational collapse. Astrophys. J 682, 745–757 (2008). doi:10.1086/588209

    Article  Google Scholar 

  • J.S.B. Wyithe, A. Loeb, Low-frequency gravitational waves from massive black hole binaries: predictions for LISA and pulsar timing arrays. Astrophys. J. 590, 691–706 (2003). doi:10.1086/375187

    Article  ADS  Google Scholar 

  • D.R.B. Yardley, G.B. Hobbs, F.A. Jenet, J.P.W. Verbiest, Z.L. Wen, R.N. Manchester, W.A. Coles, W. van Straten, M. Bailes, N.D.R. Bhat, S. Burke-Spolaor, D.J. Champion, A.W. Hotan, J.M. Sarkissian, The sensitivity of the Parkes pulsar timing array to individual sources of gravitational waves. Mon. Not. R. Astron. Soc. 407, 669–680 (2010). doi:10.1111/j.1365-2966.2010.16949.x

    Article  ADS  Google Scholar 

  • M. Zaldarriaga, U. Seljak, Gravitational lensing effect on cosmic microwave background polarization. Phys. Rev. D 58(2), 023003 (1998). doi:10.1103/ PhysRevD.58.023003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mingarelli, C.M.F. (2016). Introduction. In: Gravitational Wave Astrophysics with Pulsar Timing Arrays. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18401-2_1

Download citation

Publish with us

Policies and ethics