Skip to main content

Morphological and Morphometric Properties of the Blood-Gas Barrier: Comparative Perspectives

  • Chapter
  • First Online:

Abstract

The blood-gas barrier (BGB), the tissue partition between air and blood at the gas exchange level of the lung, is exceptional by its remarkable thinness and vast surface area. Its diffusing capacity of oxygen correlates directly with the surface area and inversely with the thickness. Structurally, the BGB comprises an epithelial cell, an interstitial space, and an endothelial cell. Along and across the evolutionary continuum, the thin, essentially three-ply laminated architecture of the BGB has been widely and greatly conserved in the lungs of animals that remarkably differ morphologically, phylogenetically, behaviourally, and ecologically. On the transition from aquatic to terrestrial life and with it preponderance of air breathing as means of acquiring oxygen (O2), the “layered” design appears to have been the only practical structural solution to supporting efficient movement of O2 from air to blood by means of simple passive diffusion. The thickness of the BGB has been considerably optimized. The range of the differences in the thickness of the BGB in the lungs of animals, which differ considerably in body mass, is very narrow, and the allometric scaling factors (slopes) of the plots of the barrier thickness against body mass are very small.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BGB:

Blood-gas barrier

CL:

Capillary loading

DLO2 :

Total morphometric diffusing capacity of the lung

DtO2 :

Morphometric diffusing capacity of the tissue barrier (BGB) of the lung

FM:

Surface (free) macrophage

OLB:

Osmiophilic lamellated body

PCBV:

Pulmonary capillary blood volume

RSA:

Respiratory surface area

St:

Surface area of the blood-gas barrier

PCBV:

Pulmonary capillary blood volume

τht :

Harmonic mean thickness of the blood-gas barrier

τht min :

Minimum harmonic mean thickness of the blood-gas barrier

τt :

Arithmetic mean thickness of the blood-gas barrier

References

  • Andrews P. Characteristic surface topographies of cells lining the respiratory tract. Biomed Res. 1981;2:281–8.

    Google Scholar 

  • Auten RL, Davis JM. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res. 2009;66:121–7.

    Article  CAS  PubMed  Google Scholar 

  • Bakhle YS. Pharmacokinetic function of the lung. In: Junod AF, Haller R, editors. Lung metabolism. London: Academic Press; 1975. pp. 293–9.

    Chapter  Google Scholar 

  • Bakhle YS, Vane JR. Metabolic functions of the lung. New York: Marcel Dekker; 1977.

    Google Scholar 

  • Bartels H, Welsch U. Freeze-fracture study of the turtle lung. 2. Rod shaped particles in the plasma membrane of a mitochondria-rich pneumocyte Pseudemys (Chrysemys) scripta. Cell Tissue Res. 1984;236:453–67.

    Article  CAS  PubMed  Google Scholar 

  • Bastacky J, Lee CY, Goerke J, Koushafar H, Yager D, et al. Alveolar lining layer is thin and continuous: low temperature scanning electron microscopy of rat lung. J Appl Physiol. 1995;79:1615–28.

    CAS  PubMed  Google Scholar 

  • Becker KL. The endocrine lung. In: Becker KL, Gadzar AF, editors. The endocrine lung in health and disease. Philadelphia: WB Saunders; 1984. pp. 3–46.

    Google Scholar 

  • Belanger LF. A study of the histological structure of the respiratory portion of the lungs of aquatic mammals. Am J Anat. 1940;67:663–96.

    Article  Google Scholar 

  • Bernhard W, Gilbert A, Vieten R, Rau G, Hollfred P, et al. Pulmonary surfactant in birds: coping with surface tension in a tubular lung. J Physiol Regul Inter Comp Physiol. 2001a;281:R327–37.

    CAS  Google Scholar 

  • Bernhard W, Postle AD, Rau G, Freihorst J. Pulmonary and gastric surfactants. A comparison of the effect of surface requirements on function and phospholipids composition. Comp Biochem Physiol A Mol Integr Physiol. 2001b;129:173–82.

    Article  CAS  PubMed  Google Scholar 

  • Brain JD. Environmental lung disease: exposure and mechanisms. Chest. 1996;109:74–8.

    Article  Google Scholar 

  • Brain JD, Hyg SD. Lung macrophages: how many kinds are there: what do they do? Am Rev Respir Dis. 1988;137:507–9.

    Article  CAS  PubMed  Google Scholar 

  • Brand M. Mitochondrial biogenesis: processes, regulation, functions and disease. Amsterdam: Elsevier; 2007.

    Google Scholar 

  • Breeze RG, Wheeldon EB. The cells of the pulmonary airways. Am Rev Respir Dis. 1977;116:705–77.

    CAS  PubMed  Google Scholar 

  • Burri PH. Morphology and respiratory function of the alveolar unit. Int Arch Allergy Appl Immunol. 1985a;76:2–12.

    Article  PubMed  Google Scholar 

  • Burri PH. Development and growth of the human lung. In: Fishman AP, Fisher AB, editors. Handbook of physiology, Sect. 3: the respiratory system. Bethesda: American Physiological Society; 1985b. pp. 1–46.

    Google Scholar 

  • Cabelli DE. Superoxide dismutases and reactive oxygen species. Brookhaven National Laboratory: Brookhaven, Report No. 2010. BNL-93775-2010-BC.2010. p. 1–32.

    Google Scholar 

  • Canfield DE. Oxygen: a four year billion history. Princeton (NJ): Princeton University Press; 2014.

    Google Scholar 

  • Clements JA. Lung surfactant: a personal perspective. Annu Rev Physiol. 1997;59:1–21.

    Article  CAS  PubMed  Google Scholar 

  • Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER. Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis. 1982;126:332–37.

    CAS  PubMed  Google Scholar 

  • Crapo JD, Young SL, Fram EK, Pinkerton KE, Barry BE, Crapo RO. Morphogenetic characteristics of cells in the alveolar region of mammalian lungs. Am Rev Respir Dis. 1983;128:S42–S6.

    CAS  PubMed  Google Scholar 

  • Crouch EC, Martin GR, Jerome BS, Laurie GW. Basement membranes. In: Crystal RG, West JB, Weibel ER, Barnes PJ, editors. The lung: scientific foundations. 2nd edn. Philadelphia: Lippincott-Raven; 1997. pp. 769–91.

    Google Scholar 

  • Cutz E, Jackson A. Neuroepithelial bodies as airway oxygen sensors. Respir Physiol. 1999;115:201–14.

    Article  CAS  PubMed  Google Scholar 

  • Daniels CB, Orgeig S, Wilsen J, Nicholas TE. Pulmonary type surfactants in the lungs of terrestrial and aquatic amphibians. Respir Physiol. 1994;95:24–58.

    Google Scholar 

  • DeFouw DO. Vesicle numerical densities and cellular attenuation: comparisons between endothelium and epithelium of the alveolar septa in normal dog lungs. Anat Rec. 1984;209:77–84.

    Article  CAS  PubMed  Google Scholar 

  • Dormans JA. The alveolar type-III cell. Lung. 1985;163:327–5.

    Article  CAS  PubMed  Google Scholar 

  • Dubach M. Quantitative analysis of the respiratory system of the house sparrow, budgerigar, and violet-eared hummingbird. Respir Physiol. 1981;46:43–60.

    Article  CAS  PubMed  Google Scholar 

  • Effros RM, Mason GR, Silverman P, Reid E, Hukkanen J. Movement of ions and small solutes across endothelium and epithelium of perfused rabbit lungs. J Appl Physiol. 1986;60:100–7.

    CAS  PubMed  Google Scholar 

  • Fehrenbach H. Alveolar epithelial type-II cell: defender of the alveolus revisted. Respir Res. 2001;2:33–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geelhaar A, Weibel ER. Morphometric estimation of pulmonary diffusion capacity. 3. The effect of increased oxygen consumption in Japanese waltzing mice. Respir Physiol. 1971;11:354–66.

    Article  CAS  PubMed  Google Scholar 

  • Gehr P, Bachofen M, Weibel ER. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol. 1978;32:121–40.

    Article  CAS  PubMed  Google Scholar 

  • Gehr P, Sehovic S, Burri PH, Claasen H, Weibel ER. The lung of shrews: morphometric estimation of diffusion capacity. Respir Physiol. 1980;44:61–6.

    Article  Google Scholar 

  • Gehr P, Mwangi DK, Amman A, Maloiy GMO, Taylor CR, Weibel ER. Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass: wild and domestic animals. Respir Physiol. 1981;44:61–6.

    Article  CAS  PubMed  Google Scholar 

  • Gomi T. Electron microscopic studies of the alveolar brush cell of the striped snake (Elaphe quadrivirgata). J Med Soc, Toho Univ. 1982;29:402–81.

    Google Scholar 

  • Goniakowska-Witalinska L, Leuweryns JM. Brush cells in the lungs of Bombina orientalis (Boulenger) (Anura, Amphibia). J Submicrosc Pathol. 1991;23:123–30.

    Google Scholar 

  • Goniakowska-Witalinska L, Lauweryns JM, van Ranst L. Neuroepithelial bodies in the lung of Bombina orientalis. In: Acker H et al., editor. Chemoreceptors and chemoreceptor reflexes. New York: Plenum; 1990. pp. 111–17.

    Chapter  Google Scholar 

  • Graham JB, Dudley R, Agullar NM, Gans C. Implications of the late Paleozoic oxygen pulse for physiology and evolution. Nature. 1995;375:117–20.

    Article  CAS  Google Scholar 

  • Haies D, Gil J, Weibel ER. Morphometric study of rat lung cells. I. Numerical and dimensional characteristics of parenchymal cell population. Am Rev Respir Dis. 1981;123:533–41.

    CAS  PubMed  Google Scholar 

  • Henk WG, Haldiman JT. Microanatomy of the lung of the bowhead whale, Balaena mysticetus. Anat Rec. 1990;226:187–97.

    Article  CAS  PubMed  Google Scholar 

  • Hughes GM, Weibel ER. Visualization of layers lining the lung of the South Americanlungfish, Lepidosiren paradoxa and a comparison with the frog and the rat. Tissue Cell. 1976;10:343–53.

    Article  Google Scholar 

  • Jimoh SA, Maina JN. Immuno-localization of type-IV collagen in the blood-gas barrier and the epithelial-epithelial cell connections of the avian lung. Biol Lett. 2013;9(1):20120951. doi:10.1098/rsbl.2012.0951.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiama SK, Adekunle JS, Maina JN. Comparative in vitro study of interactions between particles and respiratory surface macrophages, erythrocytes and epithelial cells of the chicken and the rat. J Anat. 2008;213:452–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleiber M. The fire of life: an introduction to animal energetics. New York: Wiley; 1961.

    Google Scholar 

  • Lane N. Oxygen: the molecule that made the World. Oxford: Oxford University Press; 2002.

    Google Scholar 

  • Leblond CP, Inoue S. Structure, composition, and assembly of basement membrane. Am J Anat. 1989;185:367–90.

    Article  CAS  PubMed  Google Scholar 

  • Maina JN. Morphometrics of the avian lung. 3. The structural design of the passerinelung. Respir Physiol. 1984;55:291–309.

    Article  CAS  PubMed  Google Scholar 

  • Maina JN. The morphometry of the avian lung. In: King AS, McLelland J, editors. Form and function in birds. Vol. 4. London: Academic Press; 1989a. pp. 307–68.

    Google Scholar 

  • Maina JN. The morphology of a tropical terrestrial slug Trichotoxon copleyi-Verdcourt, Mollusca: Gastropoda: Pulmonata. A scanning and transmission electron microscopic study. J Zool, Lond. 1989b;217:355–66.

    Article  Google Scholar 

  • Maina JN. The morphology of the lung of the East African tree frog Chiromantis petersi with observations on the skin and the buccal cavity as secondary gas exchange organs: a TEM and SEM study. J Anat. 1989c;165:29–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maina JN. The morphology of the lung of the black mamba, Dendroapis polylepis (Reptilia: Ophidia: Elapidae): a scanning and transmission electron microscopic study. J Anat. 1990;167:31–46.

    Google Scholar 

  • Maina JN. The gas exchangers: structure, function, and evolution of the respiratory processes. Heidelberg: Springer-Verlag; 1998.

    Book  Google Scholar 

  • Maina JN. Some recent advances on the study of the functional design of the avian lung: morphologic and morphometric perspectives. Biol Rev. 2002;77:97–152.

    Article  CAS  PubMed  Google Scholar 

  • Maina JN. The lung-air sac system of birds: development, structure, and function. Heidelberg: Springer; 2005.

    Google Scholar 

  • Maina JN. Development, structure and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone. Biol Rev. 2006;81:545–79.

    Article  PubMed  Google Scholar 

  • Maina JN. Functional morphology of the avian respiratory system, the lung-air sac system: efficiency built on complexity. Ostrich. 2008;79:117–32.

    Article  Google Scholar 

  • Maina JN. Bioengineering aspects in the design of gas exchangers: comparative evolutionary, morphological, functional, and molecular perspectives. Heidelberg: Springer; 2011.

    Book  Google Scholar 

  • Maina JN, King AS. The thickness of the avian blood-gas barrier: quantitative and quantitative observations. J Anat. 1982;134:553–62.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maina JN, King AS. The structural functional correlation in the design of the bat lung. A morphometric study. J Exp Biol. 1984;111:43–63.

    CAS  PubMed  Google Scholar 

  • Maina JN, King AS. A morphometric study of the lung of a humboldt penguin (Spheniscus humboldti). Zentralb Vet Med Anat Histol Embryol. 1987;16:293–97.

    CAS  Google Scholar 

  • Maina JN, Maloiy GMO. The morphology of the respiratory organs of the African air-breathing catfish (Clarias mossambicus) (Peters): a light- and electron microscopic study, with morphometric observations. J Zool, Lond. 1986;209A:421–45.

    Article  Google Scholar 

  • Maina JN, Nathaniel C. A qualitative and quantitative study of the lung of an ostrich, Struthio camelus. J Exp Biol. 2001;204:2313–30.

    CAS  PubMed  Google Scholar 

  • Maina JN, West JB. Thin but strong! The dilemma inherent in the structural design of the blood-water/gas barrier: comparative functional and evolutionary perspectives. Physiol Rev. 2005;85:811–44.

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, King AS, Settle JG. An allometric study of the pulmonary morphometric parameters in birds, with mammalian comparison. Philos Trans R Soc Lond B Biol Sci. 1989;326:1–57.

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, Thomas SP, Dallas DM. A morphometric study of bats of different size: correlations between structure and function of the chiropteran lung. Philos Trans R Soc Lond B Biol Sci. 1991;333:31–50.

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, Maloiy GMO, Makanya AN. Morphology and morphometry of the lungs of two East African mole rats, Tachyoryctes splendens and Heterocephalus glaber (Mammalia, Rodentia). Zoomorphology. 1992;112:167–79.

    Article  Google Scholar 

  • Meban C. Thicknesses of the air-blood barriers in vertebrate lungs. J Anat. 1980;131:299–307.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meyrick BL, Reid L. The alveolar brush cell in rat lung - a third pneumocyte. J Ultrastruct Res. 1968;23:71–80.

    Article  CAS  PubMed  Google Scholar 

  • Nganpiep L, Maina JN. Composite cellular defense stratagem in the avian respiratory system: functional morphology of the free (surface) macrophages and specialized pulmonary epithelia. J Anat. 2002;200:499–516.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen BT, Peterson PK, Verbrigh HA, Quie PG, Oídla JR. Differences in phagocytosis and killing by alveolar macrophages from humans, rabbits, rats, and hamsters. Infec Immun. 1982;36:504–9.

    CAS  Google Scholar 

  • Orgeig S, Daniels CB. The evolutionary significance of pulmonary surfactant in lungfish(Dipnoi). Am J Respir Cell Mol Biol. 1995;13:161–6.

    Article  CAS  PubMed  Google Scholar 

  • Pattle RE. The lung surfactant in the evolutionary tree. In: Hughes GM, editor. Respiration ofamphibious vertebrates. London: Academic Press; 1976. pp. 233–55.

    Google Scholar 

  • Perry SF. Quantitative anatomy of the lungs of the red-eared turtle, Pseudemys scripta elegans. Respir Physiol. 1978;35:245–62.

    Article  CAS  PubMed  Google Scholar 

  • Power JHT, Doyle IR, Davidson K, Nicholas TE. Ultrastructural and protein analysis of surfactant in the Australian lungfish Neoceratodus forsteri. J Exp Biol. 1999;202:2543–50.

    CAS  PubMed  Google Scholar 

  • Rogers RM, Cutz E. Innervation and cytochemistry of the neuroepithelial bodies in the ciliated epithelium of the toad lung, Bufo marinus. Cell Tiss Res. 1978;195:395–410.

    Article  CAS  Google Scholar 

  • Rooney SA, Young SL, Mendelson CR. Molecular and cellular processing of lung surfactant. FASEB. 1994;8:957–67.

    CAS  Google Scholar 

  • Schuger L, Skutitz APN, O’Shea S, Chang JF, Varani J. Identification of laminin domains involved in branching morphogenesis: effects of antilaminin monoclonal antibodies on mouse embryonic lung development. Dev Biol. 1991;146:531–41.

    Article  CAS  PubMed  Google Scholar 

  • Skerret SJ. Host defenses against respiratory infection. Med Clin North Am. 1994;78:941–66.

    Google Scholar 

  • Sullivan LC, Daniels CB, Phillips ID, Orgeig S, Whitsett JA. Conservation of surfactant protein A: evidence for a single origin for vertebrate pulmonary surfactant. J Mol Evol. 1998;46:131–8.

    Article  CAS  PubMed  Google Scholar 

  • Vanhecke D, Herrmann G, Graber W, Hillmann-Marti T, Mühlfeld C, Studer D, Ochs M. Lamellar body ultrastructure revisited: high-pressure freezing and cryo-electronmicroscopy of vitreous sections. Histochem Cell Biol. 2010;134:319–26.

    Article  CAS  PubMed  Google Scholar 

  • Veldhuizen EJ, Haagsman HP. Role of pulmonary surfactant components in surface film formation and dynamics. Biochim Biophys Acta. 2000;1467:255–70.

    Article  CAS  PubMed  Google Scholar 

  • Veldhuizen R, Nag K, Orgeig S, Possmayer F. The role of lipids in pulmonary surfactant. Biochim Biophys Acta. 1998;1408:90–108. doi:10.1016/S0925-4439(98)00061-1.

    Article  CAS  PubMed  Google Scholar 

  • Weibel ER. Morphological basis of the alveolar-capillary gas exchange. Physiol Rev. 1973;53:419–95.

    CAS  PubMed  Google Scholar 

  • Weibel ER. The pathway for oxygen: structure and function in the mammalian respiratory system. Cambridge (MA): Harvard University Press; 1984.

    Google Scholar 

  • Weibel ER. Lung cell biology. In: Fishman AP, Fisher AB, editors. Handbook of Physiology;the respiratory system; circulation and non-respiratory functions: Sect. 3, Vol 1, Chap. 2. Bethesda (MD): American Physiological Society; 1985. pp. 47–91.

    Google Scholar 

  • Weibel ER. Lung morphometry and models in respiratory physiology. In: Chang HK, Paiva M, editors. Respiratory physiology: an analytical approach. New York: Dekker; 1989. pp. 1–55.

    Google Scholar 

  • Weibel ER. Symmorphosis: on form, and function in shaping life. Cambridge (MA): Harvard University Press; 2000.

    Google Scholar 

  • Weibel ER. It takes more than cells to make a good lung. Am J Respir Crit Care Med. 2013;187:342–6.

    Article  CAS  PubMed  Google Scholar 

  • Weibel ER. Morphometric estimation of pulmonary diffusion capacity. I. Model and method. Respir Physiol. 1970/71;11:54–75.

    Google Scholar 

  • Weibel ER, Bachofen H. The fibre scaffold of lung parenchyma. In: Crystal RG, West JB, Weibel ER, Barnes PJ, editors. The lung: scientific foundations. 2nd edn. Philadelphia: Lippincott-Raven; 1997. pp. 1139–46.

    Google Scholar 

  • Weibel ER, Knight BW. A morphometric study of the thickness of the pulmonary air-blood barrier. J Cell Biol. 1964;21:367–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Welsch U, Aschauer B. Ultrastructural observations on the lung of the emperor penguin (Aptenodytes forsteri). Cell Tissue Res. 1986;243:137–44.

    Article  Google Scholar 

  • West JB. Thoughts on the pulmonary blood-gas barrier. Am J Physiol Lung Cell Mol Physiol. 2003;285:L501–L13.

    Article  CAS  PubMed  Google Scholar 

  • West JB, Mathieu-Costello O. Strength of the pulmonary blood-gas barrier. Respir Physiol. 1992;88:141–8.

    Article  CAS  PubMed  Google Scholar 

  • West JB, Mathieu-Costello O. Structure, strength, failure, and remodelling of the pulmonary blood-gas barrier. Annu Rev Physiol. 1999;61:543–72.

    Article  CAS  PubMed  Google Scholar 

  • Wislocki GB, Belanger LF. The lungs of the larger cetacean compared to those of smaller species. Science. 1940;78:289–97.

    Google Scholar 

Download references

Acknowledgments

Financial support by the National Research Foundation (NRF) of South Africa in the preparation of this chapter is gratefully appreciated. The views expressed here are, however, those of the author and not those of the NRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Maina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maina, J. (2015). Morphological and Morphometric Properties of the Blood-Gas Barrier: Comparative Perspectives. In: Makanya, A. (eds) The Vertebrate Blood-Gas Barrier in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-18392-3_2

Download citation

Publish with us

Policies and ethics