Skip to main content

The Effect of (−)-Epigallo-catechin-(3)-gallate on Amyloidogenic Proteins Suggests a Common Mechanism

  • Chapter
Natural Compounds as Therapeutic Agents for Amyloidogenic Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 863))

Abstract

Studies on the interaction of the green tea polyphenol (−)-Epigallocatechin-3-gallate (EGCG) with fourteen disease-related amyloid polypeptides and prions Huntingtin, Amyloid-beta, alpha-Synuclein, islet amyloid polypeptide (IAPP), Sup35, NM25 and NM4, tau, MSP2, semen-derived enhancer of virus infection (SEVI), immunoglobulin light chains, beta-microglobulin, prion protein (PrP) and Insulin, have yielded a variety of experimental observations. Here, we analyze whether these observations could be explained by a common mechanism and give a broad overview of the published experimental data on the actions of EGCG. Firstly, we look at the influence of EGCG on aggregate toxicity, morphology, seeding competence, stability and conformational changes. Secondly, we screened publications elucidating the biochemical mechanism of EGCG intervention, notably the effect of EGCG on aggregation kinetics, oligomeric aggregation intermediates, and its binding mode to polypeptides. We hypothesize that the experimental results may be reconciled in a common mechanism, in which EGCG binds to cross-beta sheet aggregation intermediates. The relative position of these species in the energy profile of the amyloid cascade would determine the net effect of EGCG on aggregation and disaggregation of amyloid fibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas S, Wink M (2010) Epigallocatechin gallate inhibits beta amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/insulin-like signaling pathway. Phytomedicine 17(11):902–909. doi:10.1016/j.phymed.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  • Andrich K, Bieschke J (2014) Aggregation in AL Amyloidosis. Biophys J 106(2):58a. doi:10.1016/j.bpj.2013.11.401

    Article  Google Scholar 

  • Bae MJ, Ishii T, Minoda K, Kawada Y, Ichikawa T, Mori T, Kamihira M, Nakayama T (2009) Albumin stabilizes (−)-epigallocatechin gallate in human serum: binding capacity and antioxidant property. Mol Nutr Food Res 53(6):709–715. doi:10.1002/mnfr.200800274

    Article  CAS  PubMed  Google Scholar 

  • Beecher GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133(10):3248S–3254S

    CAS  PubMed  Google Scholar 

  • Berson JF, Theos AC, Harper DC, Tenza D, Raposo G, Marks MS (2003) Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J Cell Biol 161(3):521–533. doi:10.1083/jcb.200302072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804(7):1405–1412. doi:10.1016/j.bbapap.2010.04.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, Wanker EE (2010) EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci U S A 107(17):7710–7715. doi:10.1073/pnas.0910723107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329(6139):506–512. doi:10.1038/329506a0

    Article  CAS  PubMed  Google Scholar 

  • Camilleri A, Zarb C, Caruana M, Ostermeier U, Ghio S, Hogen T, Schmidt F, Giese A, Vassallo N (2013) Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. Biochim Biophys Acta 1828(11):2532–2543. doi:10.1016/j.bbamem.2013.06.026

    Article  CAS  PubMed  Google Scholar 

  • Cao P, Raleigh DP (2012) Analysis of the inhibition and remodeling of islet amyloid polypeptide amyloid fibers by flavanols. Biochemistry 51(13):2670–2683. doi:10.1021/bi2015162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caruana M, Högen T, Levin J, Hillmer A, Giese A, Vassallo N (2011) Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Lett 585(8):1113–1120. doi:10.1016/j.febslet.2011.03.046

    Article  CAS  PubMed  Google Scholar 

  • Chan P (2007) Efficacy and safety of green tea polyphenol in de novo Parkinson’s disease patients. http://clinicaltrials.gov/show/NCT00461942

  • Chandrashekaran IR, Adda CG, MacRaild CA, Anders RF, Norton RS (2010) Inhibition by flavonoids of amyloid-like fibril formation by Plasmodium falciparum merozoite surface protein 2. Biochemistry 49(28):5899–5908. doi:10.1021/bi902197x

    Article  CAS  PubMed  Google Scholar 

  • Chandrashekaran IR, Adda CG, Macraild CA, Anders RF, Norton RS (2011) EGCG disaggregates amyloid-like fibrils formed by Plasmodium falciparum merozoite surface protein 2. Arch Biochem Biophys 513(2):153–157. doi:10.1016/j.abb.2011.07.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295(5556):851–855. doi:10.1126/science.1067484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. doi:10.1146/annurev.biochem.75.101304.123901

    Article  CAS  PubMed  Google Scholar 

  • Cohen SI, Linse S, Luheshi LM, Hellstrand E, White DA, Rajah L, Otzen DE, Vendruscolo M, Dobson CM, Knowles TP (2013) Proliferation of amyloid-beta42 aggregates occurs through a secondary nucleation mechanism. Proc Natl Acad Sci U S A 110(24):9758–9763. doi:10.1073/pnas.1218402110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colletier JP, Laganowsky A, Landau M, Zhao M, Soriaga AB, Goldschmidt L, Flot D, Cascio D, Sawaya MR, Eisenberg D (2011) Molecular basis for amyloid-beta polymorphism. Proc Natl Acad Sci U S A 108(41):16938–16943. doi:10.1073/pnas.1112600108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci U S A 94(18):9773–9778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M, Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating G (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378(9785):31–40. doi:10.1016/S0140-6736(11)60679-X

    Article  CAS  PubMed  Google Scholar 

  • Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM (2005) Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc 127(2):476–477. doi:10.1021/ja044834j

    Article  CAS  PubMed  Google Scholar 

  • Dragicevic N, Smith A, Lin X, Yuan F, Copes N, Delic V, Tan J, Cao C, Shytle RD, Bradshaw PC (2011) Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction. J Alzheimers Dis 26(3):507–521. doi:10.3233/jad-2011-101629

    CAS  PubMed  Google Scholar 

  • Edmundson AB, Harris DL, Fan ZC, Guddat LW, Schley BT, Hanson BL, Tribbick G, Geysen HM (1993) Principles and pitfalls in designing site-directed peptide ligands. Proteins 16(3):246–267. doi:10.1002/prot.340160304

    Article  CAS  PubMed  Google Scholar 

  • Ehrnhoefer DE, Duennwald M, Markovic P, Wacker JL, Engemann S, Roark M, Legleiter J, Marsh JL, Thompson LM, Lindquist S, Muchowski PJ, Wanker EE (2006) Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 15(18):2743–2751. doi:10.1093/hmg/ddl210

    Article  CAS  PubMed  Google Scholar 

  • Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15(6):558–566. doi:10.1038/nsmb.1437

    Article  CAS  PubMed  Google Scholar 

  • Falconi M, Iacovelli F, Desideri A (2013) A structural modeling approach for the understanding of initiation and elongation of ALS-linked superoxide dismutase fibrils. J Mol Model 19(9):3695–3704. doi:10.1007/s00894-013-1896-7

    Article  CAS  PubMed  Google Scholar 

  • Ferreira N, Saraiva MJ, Almeida MR (2011) Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation. FEBS Lett 585(15):2424–2430. doi:10.1016/j.febslet.2011.06.030

    Article  CAS  PubMed  Google Scholar 

  • Ferreira N, Saraiva MJ, Almeida MR (2012a) Epigallocatechin-3-gallate as a potential therapeutic drug for TTR-related amyloidosis: “in vivo” evidence from FAP mice models. PLoS One 7(1), e29933. doi:10.1371/journal.pone.0029933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferreira N, Saraiva MJ, Almeida MR (2012b) Natural polyphenols as modulators of TTR amyloidogenesis: in vitro and in vivo evidences towards therapy. Amyloid 19(Suppl 1):39–42. doi:10.3109/13506129.2012.668502

    Article  CAS  PubMed  Google Scholar 

  • Flach K, Hilbrich I, Schiffmann A, Gartner U, Kruger M, Leonhardt M, Waschipky H, Wick L, Arendt T, Holzer M (2012) Tau oligomers impair artificial membrane integrity and cellular viability. J Biol Chem 287(52):43223–43233. doi:10.1074/jbc.M112.396176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4(1):e6. doi:10.1371/journal.pbio.0040006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Friedemann P, Dörr J (2009) Sunphenon EGCg (Epigallocatechin-Gallate) in the early stage of Alzheimer’s disease (SUN-AK). 2009 edn. U.S. National Institutes of Health. http://clinicaltrials.gov/show/NCT00951834

  • Gauci AJ, Caruana M, Giese A, Scerri C, Vassallo N (2011) Identification of polyphenolic compounds and black tea extract as potent inhibitors of lipid membrane destabilization by Abeta42 aggregates. J Alzheimers Dis 27(4):767–779. doi:10.3233/JAD-2011-111061

    CAS  PubMed  Google Scholar 

  • Genton B, Betuela I, Felger I, Al-Yaman F, Anders RF, Saul A, Rare L, Baisor M, Lorry K, Brown GV, Pye D, Irving DO, Smith TA, Beck HP, Alpers MP (2002) A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1-2b trial in Papua New Guinea. J Infect Dis 185(6):820–827. doi:10.1086/339342

    Article  PubMed  Google Scholar 

  • Gejyo F, Yamada T, Odani S, Nakagawa Y, Arakawa M, Kunitomo T, Kataoka H, Suzuki M, Hirasawa Y, Shirahama T (1985) A new form of amyloid protein associated with chronic hemodialysis was identified as beta 2-microglobulin. Biochem Biophys Res Commun 129(3):701–706. doi:10.1016/0006-291X(85)91948-5

    Article  CAS  PubMed  Google Scholar 

  • Giunta B, Hou H, Zhu Y, Salemi J, Ruscin A, Shytle RD, Tan J (2010) Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice. Neurosci Lett 471(3):134–138. doi:10.1016/j.neulet.2010.01.026

    Article  CAS  PubMed  Google Scholar 

  • Golde TE, Cai XD, Shoji M, Younkin SG (1993) Production of amyloid beta protein from normal amyloid beta-protein precursor (beta APP) and the mutated beta APPS linked to familial Alzheimer’s disease. Ann N Y Acad Sci 695:103–108

    Article  CAS  PubMed  Google Scholar 

  • Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21(3):334–350

    Article  CAS  PubMed  Google Scholar 

  • Grelle G, Otto A, Lorenz M, Frank RF, Wanker EE, Bieschke J (2011) Black tea theaflavins inhibit formation of toxic amyloid-beta and alpha-synuclein fibrils. Biochemistry 50(49):10624–10636. doi:10.1021/bi2012383

    Article  CAS  PubMed  Google Scholar 

  • Grey HM, Kubo RT, Colon SM, Poulik MD, Cresswell P, Springer T, Turner M, Strominger JL (1973) The small subunit of HL-A antigens is beta 2-microglobulin. J Exp Med 138(6):1608–1612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112. doi:10.1038/nrm2101

    Article  CAS  PubMed  Google Scholar 

  • Hammarstrom P, Wiseman RL, Powers ET, Kelly JW (2003) Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299(5607):713–716. doi:10.1126/science.1079589

    Article  PubMed  CAS  Google Scholar 

  • Hauber I, Hohenberg H, Holstermann B, Hunstein W, Hauber J (2009) The main green tea polyphenol epigallocatechin-3-gallate counteracts semen-mediated enhancement of HIV infection. Proc Natl Acad Sci U S A 106(22):9033–9038. doi:10.1073/pnas.0811827106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He Y, Cui J, Lee JC, Ding S, Chalimoniuk M, Simonyi A, Sun AY, Gu Z, Weisman GA, Wood WG, Sun GY (2011) Prolonged exposure of cortical neurons to oligomeric amyloid-beta impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (−)-epigallocatechin-3-gallate. ASN Neuro 3(1), e00050. doi:10.1042/an20100025

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hunstein W (2007) Epigallocathechin-3-gallate in AL amyloidosis: a new therapeutic option? Blood 110(6):2216. doi:10.1182/blood-2007-05-089243

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Ichikawa T, Minoda K, Kusaka K, Ito S, Suzuki Y, Akagawa M, Mochizuki K, Goda T, Nakayama T (2011) Human serum albumin as an antioxidant in the oxidation of (−)-epigallocatechin gallate: participation of reversible covalent binding for interaction and stabilization. Biosci Biotechnol Biochem 75(1):100–106. doi:10.1271/bbb.100600

    Article  CAS  PubMed  Google Scholar 

  • Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73(6):1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Johnson KH, O’Brien TD, Betsholtz C, Westermark P (1989) Islet amyloid, islet-amyloid polypeptide, and diabetes mellitus. N Engl J Med 321(8):513–518. doi:10.1056/NEJM198908243210806

    Article  CAS  PubMed  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489. doi:10.1126/science.1079469

    Article  CAS  PubMed  Google Scholar 

  • Knowles TP, Waudby CA, Devlin GL, Cohen SI, Aguzzi A, Vendruscolo M, Terentjev EM, Welland ME, Dobson CM (2009) An analytical solution to the kinetics of breakable filament assembly. Science 326(5959):1533–1537. doi:10.1126/science.1178250

    Article  CAS  PubMed  Google Scholar 

  • Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A 83(11):4044–4048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kristen AV, Lehrke S, Buss S, Mereles D, Steen H, Ehlermann P, Hardt S, Giannitsis E, Schreiner R, Haberkorn U, Schnabel PA, Linke RP, Rocken C, Wanker EE, Dengler TJ, Altland K, Katus HA (2012) Green tea halts progression of cardiac transthyretin amyloidosis: an observational report. Clin Res Cardiol 101(10):805–813. doi:10.1007/s00392-012-0463-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambert JD, Sang S, Yang CS (2008) N-Acetylcysteine enhances the lung cancer inhibitory effect of epigallocatechin-3-gallate and forms a new adduct. Free Radic Biol Med 44(6):1069–1074. doi:10.1016/j.freeradbiomed.2007.12.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JW, Lee YK, Ban JO, Ha TY, Yun YP, Han SB, Oh KW, Hong JT (2009a) Green tea (−)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr 139(10):1987–1993. doi:10.3945/jn.109.109785

    Article  CAS  PubMed  Google Scholar 

  • Lee YK, Yuk DY, Lee JW, Lee SY, Ha TY, Oh KW, Yun YP, Hong JT (2009b) (−)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. Brain Res 1250:164–174. doi:10.1016/j.brainres.2008.10.012

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Choi DY, Yun YP, Han SB, Oh KW, Hong JT (2013) Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J Nutr Biochem 24(1):298–310. doi:10.1016/j.jnutbio.2012.06.011

    Article  CAS  PubMed  Google Scholar 

  • LeVine H 3rd (1997) Stopped-flow kinetics reveal multiple phases of thioflavin T binding to Alzheimer beta (1–40) amyloid fibrils. Arch Biochem Biophys 342(2):306–316. doi:10.1006/abbi.1997.0137

    Article  CAS  PubMed  Google Scholar 

  • LeVine H 3rd (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284

    CAS  PubMed  Google Scholar 

  • Levites Y, Amit T, Mandel S, Youdim MB (2003) Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB J 17(8):952–954. doi:10.1096/fj.02-0881fje

    CAS  PubMed  Google Scholar 

  • Li X, Zhang X, Ladiwala AR, Du D, Yadav JK, Tessier PM, Wright PE, Kelly JW, Buxbaum JN (2013) Mechanisms of transthyretin inhibition of beta-amyloid aggregation in vitro. J Neurosci 33(50):19423–19433. doi:10.1523/JNEUROSCI.2561-13.2013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin CL, Chen TF, Chiu MJ, Way TD, Lin JK (2009) Epigallocatechin gallate (EGCG) suppresses beta-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 beta activation. Neurobiol Aging 30(1):81–92. doi:10.1016/j.neurobiolaging.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  • Linke RP (1985) Immunochemical typing of amyloid deposits after microextraction from biopsies. Appl Pathol 3(1–2):18–28

    CAS  PubMed  Google Scholar 

  • Lopez del Amo JM, Fink U, Dasari M, Grelle G, Wanker EE, Bieschke J, Reif B (2012) Structural properties of EGCG-induced, nontoxic Alzheimer’s disease Abeta oligomers. J Mol Biol 421(4–5):517–524. doi:10.1016/j.jmb.2012.01.013

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen N, Nielsen SB, Yoshimura Y, Vad BS, Andersen CB, Betzer C, Kaspersen JD, Christiansen G, Pedersen JS, Jensen PH, Mulder FA, Otzen DE (2014) How epigallocatechin gallate can inhibit alpha-synuclein oligomer toxicity in vitro. J Biol Chem. doi:10.1074/jbc.M114.554667

    PubMed Central  Google Scholar 

  • Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R (2013) Molecular structure of beta-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154(6):1257–1268. doi:10.1016/j.cell.2013.08.035

    Article  CAS  PubMed  Google Scholar 

  • Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Dobeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-beta(1–42) fibrils. Proc Natl Acad Sci U S A 102(48):17342–17347. doi:10.1073/pnas.0506723102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maiti TK, Ghosh KS, Dasgupta S (2006) Interaction of (−)-epigallocatechin-3-gallate with human serum albumin: fluorescence, fourier transform infrared, circular dichroism, and docking studies. Proteins 64(2):355–362. doi:10.1002/prot.20995

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Abedini A, Plesner A, Verchere CB, Raleigh DP (2010) The flavanol (−)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity. Biochemistry 49(37):8127–8133. doi:10.1021/bi100939a

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mereles D, Wanker EE, Katus HA (2008) Therapy effects of green tea in a patient with systemic light-chain amyloidosis. Clin Res Cardiol 97(5):341–344. doi:10.1007/s00392-008-0649-6

    Article  PubMed  Google Scholar 

  • Mereles D, Buss SJ, Hardt SE, Hunstein W, Katus HA (2010) Effects of the main green tea polyphenol epigallocatechin-3-gallate on cardiac involvement in patients with AL amyloidosis. Clin Res Cardiol 99(8):483–490. doi:10.1007/s00392-010-0142-x

    Article  CAS  PubMed  Google Scholar 

  • Merlini GPG (2013) Epigallocatechingallate (EGCG) in cardiac AL amyloidosis (EpiCardiAL). http://www.clinicaltrial.gov/ct2/show/record/NCT01511263

  • Miyata M, Sato T, Kugimiya M, Sho M, Nakamura T, Ikemizu S, Chirifu M, Mizuguchi M, Nabeshima Y, Suwa Y, Morioka H, Arimori T, Suico MA, Shuto T, Sako Y, Momohara M, Koga T, Morino-Koga S, Yamagata Y, Kai H (2010) The crystal structure of the green tea polyphenol (−)-epigallocatechin gallate-transthyretin complex reveals a novel binding site distinct from the thyroxine binding site. Biochemistry 49(29):6104–6114. doi:10.1021/bi1004409

    Article  CAS  PubMed  Google Scholar 

  • Nozaki A, Hori M, Kimura T, Ito H, Hatano T (2009) Interaction of polyphenols with proteins: binding of (−)-epigallocatechin gallate to serum albumin, estimated by induced circular dichroism. Chem Pharm Bull 57(2):224–228

    Article  CAS  PubMed  Google Scholar 

  • Palhano FL, Lee J, Grimster NP, Kelly JW (2013) Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. J Am Chem Soc 135(20):7503–7510. doi:10.1021/ja3115696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paz MA, Fluckiger R, Boak A, Kagan HM, Gallop PM (1991) Specific detection of quinoproteins by redox-cycling staining. J Biol Chem 266(2):689–692

    CAS  PubMed  Google Scholar 

  • Permutt A, Chirgwin J, Giddings S, Kakita K, Rotwein P (1981) Insulin biosynthesis and diabetes mellitus. Clin Biochem 14(5):230–236

    Article  CAS  PubMed  Google Scholar 

  • Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s beta-amyloid fibrils. Biochemistry 45(2):498–512. doi:10.1021/bi051952q

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Popovych N, Brender JR, Soong R, Vivekanandan S, Hartman K, Basrur V, Macdonald PM, Ramamoorthy A (2012) Site specific interaction of the polyphenol EGCG with the SEVI amyloid precursor peptide PAP(248–286). J Phys Chem B 116(11):3650–3658. doi:10.1021/jp2121577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Priller J (2011) Effects of EGCG (Epigallocatechin Gallate) in Huntington’s disease (ETON-Study). https://clinicaltrials.gov/ct2/show/NCT01357681

  • Prince M, Albanese E, Guerchet M, Prina M (2014) World Alzheimer Report 2014 – Dementia and risk reduction – an analysis of protective and modifiable factors. World Alzheimer Report. Alzheimer’s Disease International – The global voice on dementia

    Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95(23):13363–13383. doi:10.1073/pnas.95.23.13363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rambold AS, Miesbauer M, Olschewski D, Seidel R, Riemer C, Smale L, Brumm L, Levy M, Gazit E, Oesterhelt D, Baier M, Becker CF, Engelhard M, Winklhofer KF, Tatzelt J (2008) Green tea extracts interfere with the stress-protective activity of PrP and the formation of PrP. J Neurochem 107(1):218–229. doi:10.1111/j.1471-4159.2008.05611.x

    Article  CAS  PubMed  Google Scholar 

  • Redegeld FA, Nijkamp FP (2003) Immunoglobulin free light chains and mast cells: pivotal role in T-cell-mediated immune reactions? Trends Immunol 24(4):181–185

    Article  CAS  PubMed  Google Scholar 

  • Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25(38):8807–8814. doi:10.1523/jneurosci.1521-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Rezai-Zadeh K, Arendash GW, Hou H, Fernandez F, Jensen M, Runfeldt M, Shytle RD, Tan J (2008) Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res 1214:177–187. doi:10.1016/j.brainres.2008.02.107

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro CA, Saraiva MJ, Cardoso I (2012) Stability of the transthyretin molecule as a key factor in the interaction with A-beta peptide–relevance in Alzheimer’s disease. PLoS One 7(9), e45368. doi:10.1371/journal.pone.0045368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP(121–231). Nature 382(6587):180–182. doi:10.1038/382180a0

    Article  CAS  PubMed  Google Scholar 

  • Roberts BE, Duennwald ML, Wang H, Chung C, Lopreiato NP, Sweeny EA, Knight MN, Shorter J (2009) A synergistic small-molecule combination directly eradicates diverse prion strain structures. Nat Chem Biol 5(12):936–946. doi:10.1038/nchembio.246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrigues CM, Sola S, Silva R, Brites D (2000) Bilirubin and amyloid-beta peptide induce cytochrome c release through mitochondrial membrane permeabilization. Mol Med 6(11):936–946

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saraiva MJ, Birken S, Costa PP, Goodman DS (1984) Family studies of the genetic abnormality in transthyretin (prealbumin) in Portuguese patients with familial amyloidotic polyneuropathy. Ann N Y Acad Sci 435:86–100

    Article  CAS  PubMed  Google Scholar 

  • Scheraga HA, Nemethy G, Steinberg IZ (1962) The contribution of hydrophobic bonds to the thermal stability of protein conformations. J Biol Chem 237:2506–2508

    CAS  PubMed  Google Scholar 

  • Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, Hasenbank R, Bates GP, Davies SW, Lehrach H, Wanker EE (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90(3):549–558. doi:10.1016/s0092-8674(00)80514-0

    Article  CAS  PubMed  Google Scholar 

  • Schönland SO (2013) A trial for the treatment of cardiac AL-Amyloidosis with the green tea compound epigallocatechin-3-gallate (TAME-AL). http://www.clinicaltrial.gov/ct2/show/record/NCT02015312

  • Shorter J, Lindquist S (2004) Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304(5678):1793–1797. doi:10.1126/science.1098007

    Article  CAS  PubMed  Google Scholar 

  • Shorter J, Lindquist S (2005) Prions as adaptive conduits of memory and inheritance. Nat Rev Genet 6(6):435–450. doi:10.1038/nrg1616

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Du Z, Maiti P, Klarner FG, Schrader T, Wang C, Bitan G (2012) Comparison of three amyloid assembly inhibitors: the sugar scyllo-inositol, the polyphenol epigallocatechin gallate, and the molecular tweezer CLR01. ACS Chem Neurosci 3(6):451–458. doi:10.1021/cn200133x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solomon A, Frangione B, Franklin EC (1982) Bence Jones proteins and light chains of immunoglobulins. Preferential association of the V lambda VI subgroup of human light chains with amyloidosis AL (lambda). J Clin Invest 70(2):453–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki Y, Brender JR, Hartman K, Ramamoorthy A, Marsh EN (2012) Alternative pathways of human islet amyloid polypeptide aggregation distinguished by (19)f nuclear magnetic resonance-detected kinetics of monomer consumption. Biochemistry 51(41):8154–8162. doi:10.1021/bi3012548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeda A, Mallory M, Sundsmo M, Honer W, Hansen L, Masliah E (1998) Abnormal accumulation of NACP/alpha-synuclein in neurodegenerative disorders. Am J Pathol 152(2):367–372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y, Weber C, Agid Y, Hirsch EC, Mandel JL (1995) Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nat Genet 10(1):104–110. doi:10.1038/ng0595-104

    Article  CAS  PubMed  Google Scholar 

  • Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 280(10):9595–9603. doi:10.1074/jbc.M411805200

    Article  CAS  PubMed  Google Scholar 

  • Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, Lansbury PT Jr (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40(26):7812–7819

    Article  CAS  PubMed  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002a) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539. doi:10.1038/416535a

    Article  CAS  PubMed  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ (2002b) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30(4):552–557. doi: 10.1042/bst0300552

    Article  CAS  PubMed  Google Scholar 

  • Wang SH, Liu FF, Dong XY, Sun Y (2010) Thermodynamic analysis of the molecular interactions between amyloid beta-peptide 42 and (−)-epigallocatechin-3-gallate. J Phys Chem B 114(35):11576–11583. doi:10.1021/jp1001435

    Article  CAS  PubMed  Google Scholar 

  • Wang SH, Dong XY, Sun Y (2012a) Effect of (−)-epigallocatechin-3-gallate on human insulin fibrillation/aggregation kinetics. Biochem Eng J 63:38–49. doi:10.1016/j.bej.2012.02.002

    Article  CAS  Google Scholar 

  • Wang SH, Dong XY, Sun Y (2012b) Thermodynamic analysis of the molecular interactions between amyloid beta-protein fragments and (−)-epigallocatechin-3-gallate. J Phys Chem B 116(20):5803–5809. doi:10.1021/jp209406t

    Article  CAS  PubMed  Google Scholar 

  • Wanker EE, Scherzinger E, Heiser V, Sittler A, Eickhoff H, Lehrach H (1999) Membrane filter assay for detection of amyloid-like polyglutamine-containing protein aggregates. Methods Enzymol 309:375–386

    CAS  PubMed  Google Scholar 

  • Wobst HJ, Sharma A, Diamond MI, Wanker EE, Bieschke J (2015) The green tea polyphenol (−)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Lett. 589(1):77--83. doi:10.1016/j.febslet.2014.11.026

    PubMed  Google Scholar 

  • Wojtczak A, Luft J, Cody V (1992) Mechanism of molecular recognition. Structural aspects of 3,3′-diiodo-L-thyronine binding to human serum transthyretin. J Biol Chem 267(1):353–357

    CAS  PubMed  Google Scholar 

  • Woods LA, Platt GW, Hellewell AL, Hewitt EW, Homans SW, Ashcroft AE, Radford SE (2011) Ligand binding to distinct states diverts aggregation of an amyloid-forming protein. Nat Chem Biol 7(10):730–739. doi:10.1038/nchembio.635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang X, Adda CG, Keizer DW, Murphy VJ, Rizkalla MM, Perugini MA, Jackson DC, Anders RF, Norton RS (2007) A partially structured region of a largely unstructured protein, Plasmodium falciparum merozoite surface protein 2 (MSP2), forms amyloid-like fibrils. J Pept Sci 13(12):839–848. doi:10.1002/psc.910

    Article  CAS  PubMed  Google Scholar 

  • Young LM, Cao P, Raleigh DP, Ashcroft AE, Radford SE (2014) Ion mobility spectrometry-mass spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of action of inhibitors. J Am Chem Soc 136(2):660–670. doi:10.1021/ja406831n

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang T, Faraggi E, Li Z, Zhou Y (2013) Intrinsically semi-disordered state and its role in induced folding and protein aggregation. Cell Biochem Biophys 67(3):1193–1205. doi:10.1007/s12013-013-9638-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bieschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andrich, K., Bieschke, J. (2015). The Effect of (−)-Epigallo-catechin-(3)-gallate on Amyloidogenic Proteins Suggests a Common Mechanism. In: Vassallo, N. (eds) Natural Compounds as Therapeutic Agents for Amyloidogenic Diseases. Advances in Experimental Medicine and Biology, vol 863. Springer, Cham. https://doi.org/10.1007/978-3-319-18365-7_7

Download citation

Publish with us

Policies and ethics